Após duas versões analógicas monofásicas individuais, o PROCATER ADVANCE evolui para sua mais moderna versão, com monitoramento e controle da rede elétrica com gravação de LOGs em tempo real com a mesma precisão e segurança dos seus irmãos menores
É isso: o PROCATER cresceu. E como todo crescimento baseado em estudo e testes incansáveis, um novíssimo sistema inteligente foi embarcado no sistema existente do PROCATER, que inclui um display retroiluminado que exibe todos os eventos da rede elétrica e sua tensão em tempo real, LEDs indicadores de atuação, tomadas padrão novo e muita segurança. Tudo baseado em no ATMEGA 328P-PU.
A premissa do PROCATER continua a mesma. Não vou me repetir aqui, já que as duas últimas versões estão publicadas no site - versão 1 e versão 2 para quem quiser conhecer o projeto original. O que muda é que podemos monitorar as condições da rede elétrica de uma forma muito precisa e registrar todos os eventos de queda ou subtensão, tornando o sistema muito eficaz. Todos os eventos são visualizados no display, alertas visuais e sonoros e as informações são gravadas num cartão microSD em forma de texto, que serve para consulta ou geração de poderosos relatórios e gráficos.
A ideia do registro não é se basear em data e hora e sim em período. Você pode coletar os dados do PROCATER e registrá-los dia a dia, e ao final de uma semana ou de um mês, apresentar planilhas e gráficos em caráter avaliativo para considerar a revalidação da sua rede elétrica.
Em tempo: como o funcionamento e a leitura do PROCATER são extensos, vou atualizando de pouco a pouco com fotos e vídeos, explicando cada passo de forma clara e técnica. UPDATE E pela primeira vez, minha cara no diyPowered.
A caixa utilizada na montagem do protótipo é de uma interface Intelbras, que quase não serviu por conta das dimensões internas. Praticamente tudo teve que ser repensado antes de fixar as peças. Numa versão comercial, a caixa deve ser maior... As baterias internas são células associadas formando uma bateria de 7.4V x 2.2A totalmente controladas e recarregadas pelo próprio PROCATER. A princípio, este modelo ainda não tinha encomendas, somente foi desenvolvido para testes gerais de viabilidade e funcionamento. Mas com o sucesso dessa produção, muito em breve devo ter alguns interessados também, como aconteceu com os modelos individuais do PROCATER.
A precisão de leitura da rede elétrica pode ser comparada aos multímetros em tempo real, e isso deu muito trabalho durante todo o projeto. Casar a 'eletrônica pura' com os códigos foi o processo mais demorado do projeto, para que tudo funcionasse conforme o esperado. O cartão microSD é de 4GB, e pelo que li por aí, é o limite até a data de publicação do projeto. Mesmo utilizando um cartão maior, somente os 4GB são reconhecidos. Como não tenho grandes preocupações com espaço - já que os logs são salvos num arquivo de texto padrão com poucas linhas - é mais que suficiente.
Existe uma documentação sendo gerada para o PROCATER ADVANCE, onde todas as características e funcionalidades são descritas de forma bastante completa. Como já disse, aos poucos vou postando mais material acerca do projeto, porque há muito o que falar! Por enquanto, algumas fotos.
Uma das telas de inicialização
LED indicador de rede elétrica presente
Vista traseira com as tampas para caixa de relés e chave de
desconexão das baterias (para longos períodos sem uso)
Comparativo com multímetro comercial
Tela padrão do sistema em condições normais
Gravação de eventos no microSD
Uma das telas de inicialização
Primeira tela de inicialização
LEDs frontais
Visão geral
Uma das telas de inicialização
Em modo de proteção com leitura da rede
Uma das telas de inicialização
Segunda tela de inicialização
Como nas fotos nada parece fazer sentido, estou preparando um vídeo para explicar tudo direitinho, tela a tela, cada atividade do PROCATER ADVANCE.
Um projeto audacioso e ao mesmo tempo simplório para alimentar as luzes de segurança da bicicleta, um alerta sonoro com decibéis elevados e uma porta USB de recarga emergencial para celulares e tablets, o Bike Power Bank é uma fonte de energia limpa e totalmente renovável, eliminando a substituição de pilhas recorrentes
Simplório. Já disse tudo.
A ideia era desenvolver uma forma barata e eficaz para sustentar as luzes e o sonoro da bicicleta. Sou um ciclista urbano que anda entre os carros e ônibus de forma rápida e ágil, buscando me locomover com segurança e eficiência em qualquer horário pela cidade saturada de veículos. E adoro ser livre. O que me deixava irritado era o fato de não poder implantar luzes e sonoros mais potentes - para melhor ser visto - por conta das limitações óbvias dos sinalizadores comerciais que utilizam baterias CR2032 e pilhas comuns. Isso sem contar com o grande problema desses sinalizadores: água. Dificilmente você vai encontrar algum pisca resistente a água. Outra coisa muito chata é o troca-troca de pilhas e baterias. Quem utiliza a bicicleta todos os dias e faz uso de sinalizadores, sabe que a carga não dura muito tempo, deixando as luzes brandas e com baixo alcance. O que é um grande risco quando se trafega entre os demais veículos em vias rápidas. Ver e ser visto. Eis o lema.
Não satisfeito, consegui uma bateria de notebook Dell com seis células. Utilizei quatro delas e montei tudo numa caixa plástica - que poderia ter sido preta, mas era o que eu tinha e pronto. Montei também uma porta USB para recargas emergenciais de celulares e tablets, duas saídas full em padrão P2 para luzes e sonoro e um bargraph de quatro LEDs indicadores de status de carga disponível. Tudo isso sem utilizar um único CI ou microcontrolador, jovens. Isso mesmo. Tudo na boa e velha eletrônica pura. Fixado no bagageiro da bicicleta com todos os cabos discretamente passados, o conjunto ficou muito harmônico.
Para proteger todo o conjunto durante a recarga das células, foi adicionado um circuito que não permite o acionamento das luzes e sonoro enquanto o carregador estiver conectado e ativo. É simples, mas permite salvar LEDs e resistores - bem como o circuito de pisca e potência - de ter contato com a tensão do carregador. Também adicionei um fusível na saída das células, antes de qualquer circuito, para evitar sobrecarga e curto-circuito. Afinal, estamos falando de 4.4A.
Luzes
O sinalizador dianteiro é formado por seis LEDs de alto rendimento retirados de uma tela de monitor de vídeo. Foram fixados de forma a dissipar calor na parte metálica interna, promovendo a transferência térmica inteligente. Tudo montado numa caixinha de fonte chaveada de algum modem ou roteador. O sinalizador traseiro, formado por dois LEDs em série - da mesma fonte dos LEDs do dianteiro - montados num padrão formado por acrílicos em 90º (um para frente e outro para baixo) dão um visual muito bacana. A lanterna traseira foi montada de lado no bagageiro, facilitando a carga e abrindo margem para a fixação de uma placa bem bacana que pretendo colocar na bicicleta. Só para constar: tudo lixo eletrônico.
O efeito diferenciado de piscadas foi obtido - não, não se trata de MC aqui também não! - alterando a fase de um astável com transistores comuns e aplicando o sinal num transistor de maior potência. Tudo elegante, perfeitamente montado e escondido. E o melhor: resistente a água.
Tenho deixado um plástico revestindo o Power Bank porque em Pelotas realmente chove em todas as direções, e como a caixa é branca, se eu deixar exposta ao inverno, certamente vai ficar toda manchada e feia. Logo, fica assim por enquanto. Aperfeiçoei a proteção utilizando plástico filme, que, apesar de menos resistente, abraça melhor o case e veda com eficiência.
Fico devendo as fotos do Bike Fast Charger (o carregador do power bank) - e um vídeo do conjunto acionado - por enquanto, já que estou trabalhando numa versão de menores dimensões, para ficar mais fácil de transportar e mais leve que o atual. Sem mais, as fotos.
Power Bank ativo (LED azul)
Power Bank carregando (LED vermelho)
Fixação no bagageiro
Vista inferior (destaque do para-lama de PET)
Sinalizador traseiro
Sinalizador dianteiro (destaque para o para-lama de PET)
Sinalizador dianteiro (destaque para o para-lama de PET)
Sinalizador dianteiro (destaque para o para-lama de PET)
Botão de acionamento do sonoro
Promessa é dívida: saindo o vídeo demonstrativo no mesmo dia da publicação do projeto. O vídeo da carga e as fotos do carregador novinho serão publicados ainda esta semana. Se tudo correr como o previsto.
** 01/06/2017
E aqui está o Bike Fast Charger - ou BFC - pronto e já publicado!
** 28/07/2017
Um pequeno upgrade na lanterna traseira para mudar a luz branca para vermelha. Na época da montagem, não consegui LEDs vermelhos com luz suficiente para a aplicação, então, apliquei dois LEDs brancos dos mesmos da lanterna dianteira. Dia 26 comprei 2 LEDs de 10mm alto brilho e fiz a troca. Ficou muito padrão e com brilho maior ainda! Fiz um GIF para ilustrar.
Sim, agora com para-lamas!
** 12/10/2017
Fiz um upgrade dia desses e não registrei aqui: mais LEDs e LEDs grandes na lanterna traseira para melhor visibilidade. Em dias chuvosos ou com baixa visibilidade, a lanterna anterior não dava conta...
Um projeto muito bem estruturado e pensado para aplicação hi-end e monitoria de nível, o VAA alia tecnologia digital com algoritmos avançados para criar uma atmosfera de controle visual dinâmica enquanto aplica todas as vantagens do novíssimo pré-amplificador/bypass transparente/flat diyPowered, recentemente desenvolvido, aprimorando a audição e eliminando ruídos
Quando falei aqui que me rendia aos microcontroladores - "A utilização do MC será apenas para projetos mais complexos, onde pretendo otimizar espaço e engrandecer funcionalidades" - eu falei bem sério. E alguns meses após essa postagem, nasce o primeiro projeto diyPowered baseado num microcontrolador. Trata-se do que chamei a partir da versão 3.1 de 'VAA', sigla de The Visual Audio Analyser. Projeto muito simples e, ao mesmo tempo, não. Se trata de um projeto que nunca saiu da bancada, que ficou empacado por conta de algumas dúvidas acerca de sua execução final. A princípio, seria um projeto análogo que sustentaria um conjunto de bargraph de 10 faixas (analisador de espectro) contendo frequências audíveis. Por fim, ficou sem alterações por mais de um ano.
Adquiri a minha primeira plataforma Arduino Uno R3 no final do mês de dezembro de 2016. Brinquei poucas vezes e estudei muito sobre sua história e fundamentos. É quase impossível não se apaixonar pelos microcontroladores quando se precisa de funções e de controles avançados que se tornariam dispendiosos e caros se produzidos com eletrônica pura. E desse caso de paixão à primeira vista, consegui dar prosseguimento a um projeto muito antigo que não havia saído da bancada ainda por falta de tempo e também de ferramentas adequadas para a aplicação. Não fosse esse contato pleno com a IDE do Arduino, provavelmente o VAA - Visual Audio Analyser - não teria sido um projeto tão audacioso. E talvez nem tivesse sido concluído ainda. O código que dá vida ao projeto foi escrito com todo cuidado possível,
corrigido e revisto milhares de vezes entre fevereiro e março de 2017.
Funcionamento
Simples. O áudio passa pelo novíssimo pré-amplificador/bypass transparente/flat e é corrigido automaticamente de acordo com níveis definidos previamente - níveis standard. A saída desse áudio é aplicada ao VAA que mostra no display as condições de passagem e alerta, se necessário, tanto via display quanto por meio do LED único no painel. As seguintes leituras no LED são possíveis de serem observadas:
Azul = indica que o sistema está ativo/sinal standard Lilás = sinal fraco/intermitente Vermelho = sinal alto demais (clip)
No display, as seguintes informações são possíveis de serem observadas:
L/H = L (low) até H (high) indicam a média de sinal aplicada à saída (é um VU meter)
in: lo = sinal baixo ou intermitente (sincronizado com LED lilás)
in: st = sinal standard, padrão até 0dB (não altera leituras nem atua no LED)
in: hi = sinal alto demais (piscadas indicam picos apenas, mas pode permanecer aceso em caso de clip)
spl: -dB = sinal baixo ou intermitente (sincronizado com LED lilás)
spl: 0dB = sinal standard, padrão até 0dB (não altera leituras nem atua no LED)
spl: +dB = sinal alto demais (piscadas indicam picos apenas, mas pode permanecer aceso em caso de clip)
É uma forma muito prática de observar todo o percurso do sinal até chegar no amplificador, podendo ajustar o ganho com muita eficiência. Assim como outros projetos que uso atualmente, o VAA foi 'casado' com características perfeitamente adequadas ao restante do set, tornando a audição final muito prazerosa e presente. A aplicação do novo pré-amplificador/bypass transparente/flat inclui buffer que previne erros com impedâncias e perdas com cabos, aprimorando a pureza. O conjunto formado pelo display LCD retroiluminado e pelo LED multifuncional torna o monitoramento ainda mais eficiente, permitindo a observação das condições do sinal mesmo a distâncias maiores, o que seria impossível se somente houvesse o display LCD, dadas as características desse tipo de visor.
A aplicação do VAA se dá de duas formas, de acordo com o set a ser utilizado. A melhor forma de utilizar o VAA é na saída do pré-amplificador ou gate, antes do compressor e, obviamente, antes do amplificador de potência. Se não existe um set tão completo, a aplicação se dá antes do amplificador de potência, desde que casadas suas características com o sinal recebido.
No painel traseiro, todas as conexões necessárias se fazem por meio de
dois pares de RCA (meus favoritos) e a tomada AC padronizada. Há um LED
vermelho no canto superior esquerdo, +P, que indica as condições da fonte de
alimentação do setor de áudio analógico. É uma fonte muito bem feita,
com 18V regulados e muito estáveis com corrente fixa de 150mA. Tensão e correntes
padrão para sustentar a nova linha de sinal diyPowered. A ideia de
manter esse LED é verificar se há erro ou falha na tensão, o que faria
com que o LED se apagasse completamente. Isso se faz necessário por
conta de termos fontes internas separadas e dedicadas a cada
funcionalidade, no total de duas fontes. Todo cuidado foi tomado nessa
condição para evitar ruídos e outros parasitas, uma vez que tratamos de
um equipamento sensível, de precisão e de ganho elevado.
O microcontrolador
O MC utilizado é o ATMEGA328P-PU gravado via IDE do Arduino Uno R3. Para montar a seção do display e dos demais lógicos, comprei uma placa standalone no Mercado Livre para evitar maiores gastos e trabalho desnecessário com uma placa virgem. É uma placa muito bem feita, com grande cuidado e com aparência profissional. Certamente volto a comprar desse vendedor. Se quiser comprar também, aqui vai o link original do anúncio e a lista de produtos desse vendedor. Também comprei um kit com soquete, cristal e tudo o que precisava para tirar o MC da plataforma e poder rodar o programa. Não usei todos os componentes do kit, somente o soquete com os capacitores e o cristal, já que tinha todo o restante já montado e pronto.
Geralmente, somente produzo a placa quando o projeto é muito específico e demanda muitos componentes. Se não, sou adepto da técnica P2P devidamente calculada e harmonizada, o que traz grandes vantagens para projetos sensíveis como a distância reduzida entre os componentes, o baixo custo da produção total, a otimização do espaço físico utilizado internamente no gabinete e outras grandes vantagens que não vem ao caso mencionar. Quem sabe isso vira tema de uma postagem dia desses?!
Com esses kits e placas com preços acessíveis, não vale mais a pena produzir a placa para o projeto, já que a qualidade nunca será tão grande se comparada à produção industrializada. Fora o trabalhão que dá, convenhamos. E mesmo que você consiga produzir em casa uma placa com a mesma qualidade, isso vai custar, certamente, muito mais dinheiro do que deveria. Então, produza suas placas pensando na qualidade do esquema, no cuidado com as distâncias, nas larguras das trilhas... deixe de lado, um pouco que seja, o quesito estético; estética nunca soou tão bem, veja os exemplos comerciais. Pare de ler esses fóruns que somente induzem à dúvida e acredite mais nos seus ouvidos. Não há osciloscópio melhor do que eles.
O novo pré-amplificador/bypass transparente/flat
Há anos que trabalho com linhas de correção e de aprimoramento de sinal com duas etapas básicas, uma para cada fundamento, com seus respectivos ajustes possíveis. Para este projeto, em específico, decidi aplicar a nova linha combo do pré-amplificador/bypass transparente/flat, que uniu as duas funcionalidades das linhas anteriormente utilizadas numa única linha de série, com grandes aprimoramentos e uma fase de atuação pouco usual. A cereja do bolo fica por conta da surpreendente resposta audível totalmente configurável internamente que permite a aplicação do combo em inúmeros projetos de áudio.
Por padrão, foi definida a alimentação de 18V x 150mA para a unidade estéreo do circuito. Essa tensão deve ser muito bem regulada e estável com grande filtragem e desacoplamentos inteligentes, possuir um LED vermelho de 3mm em série com um resistor de 3,3k (chamado de +P) como monitor de tensão e também contar com corrente fixa. Como foi utilizado o regulador 7818 para a fonte padrão do conjunto - por todas as razões favoráveis - pelo gerenciamento inteligente de corrente/tensão, por uma característica padrão do CI regulador, a tensão é cortada quando há algum problema na saída estabilizada, o que se observa facilmente pelo LED +P. Nessas condições, fica implícita a necessidade de manutenção sem a necessidade de abrir o equipamento.
Do lixo ao reuso
E como é de praxe, grande parte das peças e partes utilizadas estariam no lixo. O gabinete é formado por partes de quatro distintos doadores: um gabinete desktop, dois drives de DVD e um notebook HP. Os mais atentos notaram, agora, que as grades metálicas frontais são de um clássico notebook HP, assim como as frestas de ventilação traseiras. As tampas de baias de gabinete desktop já não são novidade por aqui e o trafo do VAA veio do gabinete utilizado no Pur'A. O LED frontal é um bicolor blue/red retirado de um nobreak SMS e o display LCD veio de sucata de automação comercial há alguns meses. Para o projeto original - lembrando que todos os projetos diyPowered são protótipos - o LCD possui 4 linhas e caracteres amarelos, coisa bem fina, e exibe as condições de alimentação do setor de linha (pré-amplificador/bypass transparente/flat) em conjunto com o LED +P, entre outras funcionalidades, tornando o conjunto ainda mais peculiar.
Sem mais delongas, as fotos do VAA.
Vista superior
Painel frontal
Painel traseiro com o LED +P, entradas e saídas e AC in
Painel em condição standard de sinal
Transição de sinal de standard para low sem alteração do LED
indica passagem e não condição de nível baixo real
VAA executando boot
Detalhe para LED +P
** 14/10/2017
Após meses de uso com grande aplicabilidade, fiz o primeiro update do VAA. Inclui melhorias na amostragem, remoção do fade do backlight e encurtamento do boot do programa principal, para carregar mais rapidamente. Também revisei a fonte, e tudo está perfeitamente funcional. Uma curiosidade: a versão atualizada é a 3.2 e o VAA foi lançado na versão 3.1 do código. Sim, oras. Isso porque somente após a versão 3.0 que o VAA foi considerado confiável na amostragem. Antes disso, as amostras eram defasadas e sem sincronia, entre outros bugs. A versão atual está mais enxuta, mais rápida e mais precisa.
Update 3.2
** 23/11/2017
Alguns acertos nos cálculos e melhorias na fonte (estava aquecendo além do que eu gostaria) e nos filtros.
Update 3.3 (formatação dos caracteres já segue o novo padrão)
Um Amp Sim totalmente análogo com características únicas e ajustes clássicos, o ViAS tende a acrescentar brilho e calor ao áudio ao mesmo tempo em que oferece total controle dos sinais de saída, evitando distorções e sobrecargas que poderiam afetar a qualidade do áudio final
Sim, um Amp Sim totalmente análogo. Para conferir presença, brilho, calor e vida aos meus discos, decidi colocar em prática esse projeto que se iniciou lá no pré-amplificador do Vintage Pro II, que consistia num Amp Sim que gerava um drive quente e de puro blues. Adaptando algumas coisas no mesmo circuito e adicionando outras, cheguei a um esquema muito prático com áudio final muito agradável de ser ouvido para que eu pudesse aplicar em programa musical, diferentemente do projeto inicial, que era para processar apenas o sinal da guitarra com três bandas de equalização.
O projeto e a ideia
A ideia básica gira em torno de causar uma atmosfera vintage, com o calor e o brilho de um amplificador valvulado. Vaidade? Exagero? Besteira? Não importa. Quero ouvir meus discos soando vivos, mesmo que isso me dê trabalho. E olha que deu...
Partindo de uma base completamente analógica, o ViAS possui três ajustes lineares em tempo real - bright, warm e load - que permitem aplicar brilho e calor enquanto se controla a carga efetiva dentro do sistema, por meio de um ajuste de ganho fino. O áudio final é simplesmente espetacular para audiófilos chatos como eu. Gostei muito do resultado final do projeto e dos ajustes possíveis, e confesso que o projeto superou as minhas expectativas iniciais. Até queria inserir mais ajustes, mas me faltou espaço no painel por conta dos VUs analógicos que insisti em colocar. Foram comprados no Mercado Livre, são originais de um 3x1 Sharp. Até existe a possibilidade de eu montar um outro módulo, sem os VUs analógicos, que ocupam muito espaço, com diversos ajustes para o áudio. Essa ideia surgiu agora, escrevendo a publicação do ViAS. Fiquei com a ideia na cabeça agora, tô perdido...
Funcionamento e ajustes
Não há muito mistério na operação do ViAS: dois jacks P2 estéreo conectam IN e OUT, dois potenciômetros ajustam os efeitos e um outro, a carga efetiva da combinação; dois VUs analógicos combinados com dois LEDs 'peak level' (de cor laranja) indicam picos da saída do processamento, ou seja, indicam a carga efetiva do áudio que 'sai' para o amplificador, com os efeitos aplicados ou não. Um terceiro LED (de cor vermelha) indica a carga combinada da amostragem dos LEDs 'peak level' e dos VUs analógicos, e é chamado de Persistence Peak. Na ordem da esquerda para a direita, partindo dos VUs analógicos, temos os controles 'bright', 'warm' e 'load', que são os ajustes combinados do ViAS. As funções são as seguintes:
Bright
Aplica destaque (presence) às frequências mais altas, permitindo que os médios-agudos e agudos se destaquem tornando a audição mais clara e próxima, mais aberta. Grande destaque para vocais, sibilos e instrumentos de sopro;
Warm
Autoexplicativo, mas acrescenta calor ao áudio, um toque push-pull com nuances agressivas e rascantes, como se ouve nos antigos amplificadores que equipavam modulados, rádios e vitrolas. Ideal para ouvir vinis, rádios e fitas cassetes. Possui grande destaque para médios-graves, médios e possui corte bem próximo aos médios-agudos em que o 'bright' começa a atuar;
Load
Carrega ou descarrega ativamente a carga efetiva que é aplicada aos filtros, permitindo total controle do que será corte e do que será processado. Atua diretamente nos dois controles, 'bright' e 'warm', tornando a audição mais precisa e o áudio final mais claro e o mais vintage possível;
O Persistence Peak, VUs analógicos e os indicadores de pico por canal
Primeiros testes - ao fundo, os voltímetros da F5812ADJ
Persistence Peak é um led único que opera num circuito baseado em delay, de forma a indicar a persistência da carga efetiva na saída do processamento, que também é visto nos VUs analógicos e nos LEDs 'peak level' de forma rápida pela amostragem pré-definida, mas que pode ser rápida demais até para os olhos mais espertos. Dessa forma, o Persistence Peak permite a observação da carga efetiva acumulada em forma de brilho, a partir de um LED vermelho, tornando o monitor mais eficiente e com um visual muito bonito e interessante para quem o vê. Para indicar o funcionamento do ViAS, foi adicionado no painel frontal um LED verde. Todos os LEDs do painel frontal foram montados internamente e o brilho de cada um deles é aplicado em pinos de acrílico transparentes, oferecendo um design limpo e funcional.
Já nos VUs analógicos, o circuito de driver foi desenvolvido de acordo com a aplicação. A ideia era criar a maior rapidez possível no movimento das bobinas para que não houvesse tanta inércia, comum nesse tipo de mostrador. O resultado é um movimento muito rápido, sincronizado e numa ampla faixa de frequências. A iluminação dos VUs, ou seja, o backlight, foi criado utilizando LEDs retangulares de alto brilho retirados de uma tela LED, de um monitor da LG. Esses LEDs produzem uma luz muito intensa e branca, e também possuem um consumo bastante elevado. Mas como eu pretendia utilizar lâmpadas originais de receivers, que consomem bastante corrente também, optei por montar dois desses LEDs em paralelo com uma redução drástica da corrente, tornando a luz emitida por eles intensa o suficiente para iluminar os VUs mas sem causar um efeito artificial e feio, e também para que não consumissem tanta corrente. Montei uma capela para manter a luz direcionada e disposta para os VUs e para evitar o vazamento de luz. A iluminação dos VUs ficou muito satisfatória, mesmo que não tenha ficado com uma luz quente, não ficou tão artificial.
A super fonte de alimentação
Por se tratar de um esquema totalmente analógico, uma fonte estabilizada, muito bem filtrada e bem dimensionada foi produzida para o ViAS: um total de 7080µF - descontados os desacoplamentos e os cerâmicos - foi adicionado ao projeto, sendo que 4400µF foram dedicados na tensão estabilizada e os demais 2680µF estão na etapa de retificação da tensão do trafo. O circuito análogo exigiu bastante esforço na montagem e na disposição dos componentes para eliminar quaisquer chances de captação de ruídos, sejam irradiados ou conduzidos, o que consumiu bastante tempo e dedicação. Mas todo esforço foi recompensado já na primeira audição, e era uma audição de teste...
Outra grande preocupação foi a isolação das etapas. A fonte, por exemplo, é isolada da placa principal de forma física, eliminando completamente a irradiação de ruídos. Outros cuidados foram tomados para evitar ruídos conduzidos, como a utilização de filtros clássicos, ferrites e bobinas. Não poupei esforços para que o projeto 'tocasse' em alta fidelidade sem quaisquer ruídos. Também atuam filtros na entrada de energia elétrica, já no conector de força, para evitar que transientes gerem ruídos na operação.
O gabinete segue a linha Labrador, com uma carcaça de CD/DVD-ROM como base do projeto. Também sem qualquer pintura, somente o metal cru. Como falei noutro projeto aqui, tenho a intenção de pintar os gabinetes da linha Labrador, mas ainda não o fiz. Mas a ideia está cada vez mais incomodando, hora dessas eu pinto.
Como de costume, vamos citar o que seria lixo: a carcaça do DVD-ROM, os pinos de acrílico - onde os LEDs se iluminam no painel frontal, que foram retirados de um switch ethernet onde possuíam a mesma função; o trafo foi retirado da nossa primeira panificadora e estava guardado há meses, os knobs são iguais àquele que foi utilizado no H2PV1 (retirados de um antigo receiver) e o painel frontal é a clássica tampa de baia de gabinete ATX; os LEDs laranjas e o LED verde foram retirados da sucata de uma EPSON LX-300 e os demais LEDs eu já tinha - e também foram retirados de algum equipamento em algum dia - e por aí vai. O lixo é renovado e meus projetos, custeados pela vaidade humana. Para este projeto, em especial, dediquei alguns dinheiros comprando os VUs no Mercado Livre. Os três potenciômetros também foram comprados, mas numa eletrônica local, porque possuem valores não muito comuns e eu não possuía nenhum duplo em casa.
Se eu me esquecer de algum detalhe do projeto, posto em forma de atualização. Sem mais delongas, as clássicas fotos.
Vista com painel iluminado 1
Vista com painel iluminado 2
Painel traseiro - conexões IN/OUT e conector de força
(preciso de um estilete novo para esses cortes precisos, quebrei
a moldura ao forçar com toda a cegueira da lâmina atual)
Adoro esses gabinetes de drive para projetos!
Fico devendo um vídeo demonstrativo do acionamento do ViAS, onde é possível observar a atuação dos peaks e também do funcionamento com programa musical.
Log do projeto
28/04/2016 - Definições do circuito
29/04/2016 - Esquema elétrico iniciado com testes sequenciais para adequação do circuito pré-existente do projeto Vintage Pro 2
30/04/2016 - Circuito em teste para encontrar valores críticos de ajuste do Warm; VUs testados e funcionais
01/05/2016 - Definido que projeto possuirá ajustes finos de ganho IN/OUT para permitir presença ao Warm
02/05/2016 - Potenciômetros adquiridos com valores específicos ao projeto; testes do Warm finalizados e sonoridade final muito satisfatória, mas ainda requer alguns ajustes básicos;
04/05/2016 - Iniciando design do painel frontal e gabinete; gabinete seguirá padrões modulares do Projeto Labrador
05/05/2016 - Design do painel definido, peças separadas e furação do painel em andamento; ainda serão escolhidas as cores dos LEDs indicadores do painel; knobs de ajuste definidos
06/05/2016 - Um pequeno descuido na furação do painel levou a um estrago sem solução... um novo painel será utilizado e a furação será reiniciada
09/05/2016 - Novo painel produzido com furação finalizada; LEDs indicadores, VUs e ajustes afixados; iniciada a montagem dos circuitos
10/05/2016 - Definidas as cores dos LEDs indicadores; serão quatro LEDs indicadores, ao total, no painel frontal; circuitos dos peaks montados e testados
11/05/2016 - Montagem dos circuitos de pré-amplificação do primeiro estágio, gatilhos e drivers dos LEDs; calibração iniciada para LEDs peak; definições da fonte sendo iniciadas
12/05/2016 - Montados e instalados os circuitos drivers dos VUs analógicos, ainda não calibrados
13/05/2016 - Montagem e conexões no painel frontal; teste dos peaks e dos filtros; primeiros testes com alimentação; as primeiras impressões da montagem superam todas as expectativas; fixação definitiva dos LEDs indicadores do painel frontal; descontinuado circuito de ajuste de ganho fino IN/OUT manual e desenvolvido circuito de ganho automático para garantir presença ao Warm; cores dos LEDs indicadores definidas
14/05/2016 - Fixação do painel pronto no gabinete; backlight dos VUs instalado com capela contra vazamento de luz; testes de audição com fones de ouvido; alteração do ganho automático implantado anteriormente para permitir controle manual de carga efetiva IN para processamento do Warm com maior precisão; iniciada a montagem da fonte e montagem final para testes de conclusão
15/05/2016 - Fonte montada e instalada no gabinete; conexões IN/OUT instaladas e funcionais; primeiro teste com todos os circuitos montados e instalados; o projeto segue para finalização e publicação
16/05/2016 - Calibração dos VUs e LEDs peak L/R e Persistence Peak; fonte com grande poder de reserva adicionado; utilização de knobs vintage; todos os circuitos operando perfeitamente; projeto segue para limpeza do gabinete para finalização e posterior publicação no blog
** 19/05/2016
Recém publicado o projeto e já temos o primeiro update com alguns extras: fotos da instalação e o vídeo demonstrativo, conforme prometido.