Mostrando postagens com marcador lixo eletrônico. Mostrar todas as postagens
Mostrando postagens com marcador lixo eletrônico. Mostrar todas as postagens

Troca do gabinete do meu trafo de ferramentas e bancada

Faz muito tempo que tenho esse trafo, praticamente 8 anos. Como já disse aqui antes, minhas ferramentas elétricas vieram do sudeste onde as instalações elétricas residenciais monofásicas são 127V. Aqui no Sul, é 220V. Logo, tinha um problema. Mas essa história eu já contei e se você quiser saber, corre lá na postagem da época!

Aquele gabinete plástico da Enermax não durou muito tempo porque o Cícero (meu finado Labrador) estava correndo pela casa e se enroscou na extensão que estava ligada no trafo, jogando ele de uma mesa diretamente no chão. Nem preciso dizer que se despedaçou por completo né. Como tinha um gabinete plástico de um no-break APC, acabei usando na época. Esse gabinete APC é muito elegante, tem bastante ventilação mas também é bastante frágil para suportar esse trafo dentro, e alguns meses depois, trincas apareceram em toda a lateral... Por sorte, consegui um gabinete metálico bem grande de um estabilizador de tensão antigo que estava com o trafo queimado - e por mais sorte ainda tirei fotos dele antes de descartá-lo no Eco Ponto aqui da cidade, adoro registros - que me serviu até ontem. Esse gabinete já estava bastante enferrujado em algumas partes e ainda tinha um conjunto de tomadas padrão antigo com bastante mal contato, o que era um problema quase sempre. Daí, na última semana me apareceu esse estabilizador podre de sujo que nem pensei duas vezes antes de pegar. Vejo muito potencial nas coisas que são jogadas fora e quando pego é porque vai sair algo bom. 

Limpando o gabinete e removendo o amarelado dos plásticos

Falando em gabinetes antigos, geralmente são brancos. E como você deve saber, partes plásticas brancas tendem ao amarelamento com o passar dos anos. Dica pra você: desmonte todo o gabinete, deixe de molho num balde sob imersão numa solução de água, sabão em pó e água sanitária por 24 horas. Grande parte da sujeira vai se soldar, bastando para isso esfregar. O amarelado das partes plásticas não vai sair mesmo, mas aqui vai o grand finale: pegue água oxigenada volume 40, passe em toda a superfície das partes plásticas amareladas sem piedade, deixe uma bangunça mesmo. Embrulhe essa peça em plástico filme ou algum saco plástico transparente e deixe exposto ao sol por pelo menos 3 horas. A grande maioria dos casos, é resolvida na primeira aplicação, mas se ainda estiver amarelado, repita o processo lavando a peça por completo, secando bem antes da nova aplicação. Pena eu não ter tirado fotos desse gabinete antes do processo, porque ficou muito bom.

Tempo recorde ou necessidade?!

Em menos de 48 horas transplantei o trafo bisonho pro gabinete novo e como sou chato e adoro uma complicação, meti várias melhorias nele: tem filtro básico na entrada 220V e filtro aprimorado na linha dos 120V. Tem fusíveis dedicados para as duas linhas de trabalho, LED indicador de energizado e LED indicador de saída energizada. E para deixar com fino trato, um voltímetro digital LED em vermelho na frente. Debochado, esse trem. Não é um trafo isolador, mas é um trafo que ainda vai me atender bastante. E não uso ele somente pra furadeira e serra tico-tico, antes que me pergunte: uso esse cara em bancada para reparo e teste de equipamentos que não possuem bivolt. São 1000VA prometidos pela Enermax que provavelmente são entregues porque já fiz esse trafo trabalhar forte e não cai tensão nem abre o bico.

Como usar voltímetro DC para medir AC?

Para fins de informação nerd, esse voltímetro é herdado da minha fonte antiga, a F5812ADJ, atualmente aposentada e doadora de órgãos. E como eu fiz pra que um voltímetro DC medisse AC?! Simples, jovem. Esse trafo - e todos os trafos que já reaproveitei de no-break e estabilizador - possui um ou mais enrolamentos que podem ser utilizados para diversos fins, apenas se deve ter cuidado porque alguns deles não são isolados da rede elétrica. Este trafo, em específico, possui um enrolamento de 10V que retificado, passa para 14V em aberto. Como ele foi feito para acionar relés e um LED indicador de ligado naquelas placas infames dos estabilizadores, tem corrente mais que suficiente para outras coisas. Na sua versão anterior, naquele gabinete antigo e metálico, ele alimentava um cooler e um LED. Sim, esse trafo aquece bastante e como o utilizava de forma recorrente, achei por bem fazer isso. Agora, com uso mais restrito, optei por não mais utilizar o cooler e adicionei algumas funções bacanas ao carinha. Então, sem mais delongas, como esse enrolamento faz parte de todo o conjunto, é óbvio que ele sofre interferência direta de qualquer queda ou incremento de tensão. Se eu já tenho um enrolamento pronto para uso, por que eu colocaria um trafo dedicado para esta finalidade?! Claro que descontadas as correntes de trabalho dos LEDs, relé e o próprio voltímetro, calibrei por meio de trimpot a tensão a ser monitorada e pronto. Variações são mostradas com perfeição pelo voltímetro, sem maiores dores ou circuitos mirabolantes e desnecessários. 

Essa modalidade de medir tensão AC é uma das mesmas que podem ser utilizadas para a esta função quando utilizamos ATMEGA ou outros microcontroladores. Não esqueça de cobrir o ponto decimal do display com fita isolante ou marcador permanente senão vai mostrar 12.0V ao invés de 120V.

Ligando o monstro

Ao energizar o trafo, o LED amarelo permanece iluminado. Esse LED amarelo é um indicador de que há energia no pós-fusível. Dessa forma, o trafo também está energizado para gerar a famosa tensão de stand by. Ok, ok, ok; vamos lá, nutellinha: a coisa aqui é feita para aproveitar peças, reduzir o desperdício, poupar o meio ambiente, consumir o mínimo de recursos próprios, trabalhar com elegância e inteligência. Não tenho mamãe, papai ou aquele patrocínio cool que você tem. Logo, foi assim: não tinha uma chave de pressão que pudesse substituir a original do equipamento, que estava deteriorada, e não iria comprar uma. A opção foi utilizar uma chave menor, de baixa capacidade para acionar um relé e abrir a saída dos 120V. E tudo isso eu tinha em casa. Perfeito! 





Tomadas padrão novo, fusível 220V (preto) e 120V (gelo)


O acabamento 'acrílico verde' do furo do display é recorte de garrafa PET e se o display fosse LED verde, teria ficado perfeito!




Medição da saída do trafo

E aqui, fotos do antigo soldado que muito me serviu. Agora vai pro descarte no Eco Ponto seguir seu curso natural. 






AT5 Slim Power - a super fonte de bancada inteligente de alta performance

Tudo começou por volta de junho desse ano, quando minha guerreira fonte de bancada passou a se entregar após anos de serventia. Tinha algumas ideias para dar um upgrade nela, já que meus últimos projetos precisaram de mais corrente do que ela poderia entregar, mas esbarrei na trabalheira que seria fazer um trafo maior caber lá dentro (não, eu não quero usar uma fonte chaveada nisso!) e ainda dar conta da dissipação de calor que aumentaria muito dentro daquele gabinete pequeno. Em agosto decidi que partiria do zero, um novo e empolgante projeto que terminaria na montagem de uma super fonte de bancada inteligente, com alta performance, proteções de ponta a ponta e um tamanho reduzido para ser prática de ser transportada. Hoje é dia 02/11 e alguns meses foram engolidos durante esse projeto, que me tomou bastante tempo e planejamento.

Antes de continuar e para não correr o risco de ser redundante nesse post, peço que conheça a fonte antiga F5812ADJ que se aposentou (e que vai servir suas peças para testes e outros projetos, é claro!) e também leia em seguida a postagem que deu início a essa jornada, lá em agosto.

Sou das antigas e fonte de bancada pra mim, tem que seguir a premissa raiz trafo-retificação-alta filtragem. Temos um mercado chinês muito eficiente inundando as prateleiras com fontes de bancada a preços atraentes mas também com projetos falhos e sem a utilização de transformador isolador, o que naturalmente inclui uma fonte chaveada barata, de alta corrente e sem qualquer tipo de proteção. Aí, meu guerreiro diyman, você está há dias em cima de um projeto utilizando uma fonte xing ling dessas e o chaveamento vai pro saco largando corrente e tensão em alta escala no seu adorado circuito. Imagina só. Isso sem falar nos ruídos impraticáveis que essas fontes geram, podendo interferir diretamente no seu projeto fazendo com que você perca horas até descobrir o porquê do microcontrolador travar, por exemplo. Por isso quis fazer uma fonte com rígidos controles e proteções. Já havia mencionado no post que deu início ao projeto sobre as características que eu gostaria de ter e ao mesmo tempo, fui atualizando novas funções ou retirando funções que antes pareciam interessantes. Ao mesmo tempo que sou prático, sou um burocrata quando se trata dos meus projetos. Agora, com o projeto concluído, veja como ficou:

Entrada: 220V ±7,4A (full power)
Proteção entrada: fusível, filtro de linha full, varistor, terra lift/ground
Saída: 1.1V a 19,4V x 4,2A x 19,300uF (entra em proteção a partir de 4,33A, trafo de 16V + 16V x 5A)
Proteção saída: curto-circuito e/ou corrente acima de 4,33A, temperatura máxima de trabalho, queda brusca de tensão, tensão de descarga (retorno), descarga brusca do banco de capacitores, carga mínima instalada para garantir corrente de ajuste atualizada
Display: tensão e corrente atuais
Ajuste: fino via potenciômetro linear
Dissipação: passiva até ±60°C, cooler aciona discretamente para equilibrar a temperatura do dissipador principal. Acima dos 85°C entra em proteção térmica acionando o cooler a full power, desligando o trafo de potência e permanecendo nesta condição até que a temperatura baixe a níveis seguros de trabalho
Porta serial: comunicação direta com o microcontrolador a partir da placa Arduino para atualização do código sem precisar abrir o equipamento e retirar o chip
Chave lift/ground: permite unir o comum do circuito da fonte ao terra da tomada ou separar, funcionalidade muito eficiente para algumas situações
Stand by: fonte permanece com as proteções ativas mesmo em espera, desliga fisicamente o trafo de potência da rede elétrica descarregando todo o circuito e mantendo o mínimo de consumo associado apenas às funções vitais (fontes independentes)
LEDs e outros indicadores: fonte possui diversos alertas sonoros e visuais para eventos de proteção, acionamento etc.
Superdimensionamento: todos os circuitos de potência foram superdimensionados para trabalhar com o mínimo de resistência natural dos condutores e componentes, resguardo de potência para trabalho com folga
Dissipador unificado: grande vantagem para monitoramento de temperatura de trabalho e para manter integrados e transistores com equilíbrio térmico

Basicamente é isso.

Não tem muito mistério além do código, a fonte trabalha normalmente com o adorável LM317 de servo mestre e um booster de corrente com dois transistores Darlington TIP125. Alguns vão dizer que eu poderia ter utilizado apenas um TIP125, eu sei disso. Mas por que fazer o carinha trabalhar sozinho perto do seu limite se podemos aprimorar com elegância e colocar mais um?! Outros dirão que eu poderia ter utilizado um transistor de maior capacidade ao invés de dois. Eu também sei disso. Essa fonte foi montada com peças que eu já tinha em casa, não é um projeto nutellinha com verba ilimitada da mamãe e do papai ou de patrocínio. Aqui o negócio é raiz, é aproveitar ao máximo a vida útil dos componentes, é enxugar custo sem perder qualidade e poupar o meio ambiente. E antes que digam 'ahhh não precisava desse cooler aí dentro pra dissipar só essa correntezinha porque o componente aguenta', o projeto é compacto e sempre faço vários testes para determinar se isso vai ser realmente necessário. Nesse caso, foi. E ele só opera se preciso, não fica girando o tempo todo. E outra, você que fica criticando projeto alheio, deveria saber quanto calor um transistor Darlington gera... agora imagina dois num gabinete pequeno sob alta corrente (4A não é pouca coisa) por várias horas ininterruptas. Funcionaria sem o cooler? Talvez. Mas será que o LM317 seria capaz de se manter trabalhando firme sob altas temperaturas? E quanto tempo essa fonte iria funcionar sem dar problema?! Viu, esses questionamentos se tornaram irrelevantes agora, jovem.

Mas vamos voltar ao ponto, já que esclarecemos os fatos. 

Quando alimentada, a fonte é acionada parcialmente via fonte de stand by, mantendo a potência desligada. Ela aciona o cooler rapidamente, acende o LED azul e logo se apaga, desligando o cooler e acionando o LED vermelho de stand by. Isso é importante por duas razões básicas: a primeira, para poupar a potência e claro, economizar energia; a segunda, para manter o cooler lubrificado e ativo, evitando que o rolamento fique engripado por falta de uso. Ao pressionar o botão power, a fonte faz um teste rápido (bip + piscadas LED amarelo) e aciona a potência, liberando tensão na saída, ligando o display frontal e o LED verde. A partir desse momento, a fonte está num estado de operação, basta selecionar a tensão desejada.

Proteção contra curto-circuito e overload

Em operação, quando a corrente exceder o valor de 4,33A levará o sistema de proteção contra sobrecarga ser acionado via ATMEGA, cortando a alimentação AC do próprio trafo de potência, protegendo toda a etapa, inclusive os diodos retificadores. É uma proteção em linha completa, cortando toda energia da potência e não somente das saídas DC. A mesma proteção é aplicada quando há curto-circuito na saída. A ação é a seguinte: corta a alimentação AC do trafo, bip, duas piscadas no LED amarelo, display frontal e LED verde se apagam. Essa condição permanecerá enquanto houver sobrecarga ou curto na saída da fonte.

Proteção contra alta temperatura de trabalho

Há duas proteções contra temperatura alta de trabalho na AT5. A primeira é controlada pelo ATMEGA e assume que partir dos 85ºC medidos no dissipador principal ocorrerá o seguinte: corta a alimentação AC do trafo, bip, LED azul acende e aciona o cooler full power, display frontal e LED verde se apagam. Essa condição permanecerá por aproximadamente 1 minuto para baixar drasticamente a temperatura de trabalho da potência. Após esse período, a fonte será acionada automaticamente alimentando a carga se a temperatura estiver dentro da faixa segura.

A segunda proteção contra alta temperatura de trabalho é mais robusta e conta com um termistor que controla o aquecimento do dissipador. Essa proteção adicional foi instalada justamente nos testes de equilíbrio térmico da fonte, nos testes finais. Foi verificado que com o gabinete montado e alimentando uma carga a partir dos 2,5A o dissipador aquece bastante, distante do valor máximo determinado na primeira proteção térmica, mas bastante acentuado para os meus parâmetros particulares. Isso poderia levar o LM317 a entrar em proteção rapidamente ou ainda reduzir bastante a vida útil do conjunto da potência, elevando a temperatura interna do gabinete e tornando seu funcionamento 'desconfortável'. Lembrando que alguns componentes não gostam de ambientes muito quentes, como os eletrolíticos.  Então, adicionei esse segundo termistor que atua diretamente no driver de acionamento do cooler, fazendo com que ele gire lentamente a partir dos 50ºC para equilibrar a temperatura do dissipador. Esse giro pode ser aumentado ou diminuído automaticamente de acordo com o incremento de temperatura medido, se tornando um eficiente mecanismo de controle e aumentando a vida útil da potência. O cooler gira de forma tão discreta que mal pode ser ouvido durante a operação.

Superdimensionamento do sistema

A premissa do diyPowered é bastante clara: respeito aos limites dos componentes. Se eu tenho um trafo que pode entregar 5A em full power, eu deveria operá-lo até os 4,2A ou ainda 4,5A. Isso causaria ainda bastante aquecimento, mas distante do que poderia ocorrer se tentássemos tirar toda a sua capacidade. Logo, se eu tenho um projeto que consome 5A em full power, qual a corrente do trafo que eu vou usar? Você talvez diga '5A'. Talvez muitos digam isso. Eu digo '6A'. Folga, pessoal. Se você quer fazer alguma coisa direito, se você quer projetar algo de qualidade, faça com que os componentes trabalhem abaixo de sua capacidade máxima. Isso é elegante, isso é inteligente. Foi assim que muitos equipamentos foram projetados há 20, 30, 40 anos e é por esta razão que muitos deles estão por aqui até hoje: receivers, tape decks, sintonizadores de rádio, CD players... Por isso montei essa fonte com folga mesmo com esse trafo de 16V + 16V x 5A que em teste de carga chegou a fornecer 5,4A sem queda de tensão. Mas aqui a gente faz a coisa do jeito certo e a AT5 ficou limitada aos seguros 4,2A entrando em proteção aos 4,33A. Corrente mais que suficiente para a grande maioria dos projetos. Tenho um outro trafo de 1200VA que pode entregar facilmente 12A, 15A numa tensão máxima de 13V mas achei meio desnecessário tanta corrente nesse momento e o monstro aí vai ficar para um próximo projeto.

Na retificação, temos dois diodos 6A6 brutos e sem frescuras e um banco de capacitores de 19,300uF. Tudo montado de forma elegante e estudada, cabeamento da potência com bitola de respeito e fixação por presilha. A tensão que alimenta a lógica, stand by, LEDs e cooler vem de uma fonte dedicada, também por trafo, não utilizando corrente alguma da fonte de potência.

Proteção AC

Na entrada de linha AC, temos o clássico fusível e um circuito de filtro de linha full, com tudo que se tem direito, até um varistor, e um cabo de força de respeito. Uma chave no painel frontal permite unir o terra da tomada ao comum da fonte, função muito desejada e pouco vista nas fontes do mercado. Aproveitei ao máximo cada espaço do gabinete, fixando componentes e placas de forma inteligente para facilitar o cabeamento e pensando sempre na dissipação, transferência de calor e claro, pensando nas manutenções futuras. Essa última, parece ser esquecida pelos projetistas e engenheiros: qualquer equipamento vai demandar algum tipo de manutenção futura e parece que isso não é levado em conta na maioria dos últimos equipamentos que reparei. Um bom exemplo disso pode ser ilustrado por alguns notebooks e nobreaks que precisam ser quase que totalmente desmontados para acessar partes críticas.

Gabinete escolhido

Esse é um velho conhecido: um gabinete de nobreak NHS de 600VA. Possui uma boa estrutura, boa resistência mecânica e uma razoável ventilação natural que foi melhorada ao retirar as tomadas traseiras e fixar uma tela. A única coisa que não ficou bacana foi a porta serial, que teoricamente deveria caber na parte de trás (já tem essa furação de fábrica) mas não passa de jeito nenhum. Poderia ter limado um pouco mas como já foi bastante desgastante furar esse gabinete (não parece mas a chapa utilizada é resistente) achei mais fácil apenas retirar a capa metálica da porta e parafusá-la assim mesmo, como está.

Esse gabinete é bastante compacto, tem uma cara de fonte de bancada moderna e fazia algum tempo que vinha pensando em usá-lo para esta finalidade. No mais, pretendo gravar um vídeo com a fonte em funcionamento pra ilustrar melhor todo o projeto. Apesar de toda trabalheira que deu, ficou muito eficiente e é sem dúvidas uma evolução à fonte anterior.


Corrente máxima em teste inicial

Teste raiz!

Tomada de ar eficiente

Lateral detonadinha do gabinete

Frontal desligado (acabamento ficou ruim mas tá valendo)

Fonte acionada (tensão mínima)

Fonte acionada (tensão máxima)

5V sem carga e terra isolado

5V sem carga e terra conectado ao comum (LED laranja)

Fonte em stand by

Detalhe do dissipador principal e da fiação

Detalhe da fixação dos componentes principais, ainda no início do projeto (embaixo do relé preto ali no meio fica a fonte dedicada para lógica e acessórios)

Autotrafo XEROX 105S70309 REV C 2KVA

De todas as pérolas que encontro nos anúncios da OLX, muitas vezes encontro coisa boa que é tratada como sucata. Esse trafo é um monstrengo, bizarro. Tem ajuste fino da tensão de entrada (tem foto lá embaixo) pra compensar a saída de acordo com o equipamento que será alimentado e fiação robusta para até 20A. Coisa feita direito, sem economizar mesmo.

Tem até um disjuntor pra proteção individual. Pesei ele numa balança de uso não comercial (dessas domésticas de pesar pessoas) e o carinha tem quase 30kg. O gabinete tem chapas grossas e ajuda bastante a aumentar esse peso final, mas o mais bonito mesmo fica lá dentro: o trafo é mesmo uma bizarrice de grande.

Foi só dar um talento nele, deixar limpinho e usar. Lembrando que tenho ferramentas que vieram do Sudeste, que são 127V, e esse cara aí vai substituir meu antigo trafinho de 1000VA com uma margem de segurança muito grande.










Fonte low cost (genérica) com cooler PWM (ou como deixar o cooler do PC mais silencioso)

Session. Again.

Dessa vez é coisa rápida. Simples. Tenho um servidor de câmeras 24/365 que fica no mesmo local onde projeto as coisas e que compartilho espaço com um home office. Quando tinha um servidor melhor, a fonte era uma Corsair dedicada e super silenciosa. Parou e eu não achei justificável comprar outra fonte desse nível para um servidor caseiro. E como utilizo ele sob regime de nobreak, muito raramente dá problema numa fonte dessas - low cost - trabalhando dessa forma. E quando dá problema, é fim de vida útil mesmo, já que fica ligada durante horas e por meses. O problema dessas low cost é - entre outras coisas - o barulho infernal gerado pelo cooler. Daí, como aqui tem DIY, fui lá pegar uma daquelas plaquinhas muquiranas de controle de corrente/tensão e fiz a adaptação. Digo corrente/tensão porque a arquitetura delas varia, e existem muitas delas por aí. Essa mesma, foi tirada de uma fonte low cost que prometia 600W. Coisa muito simplória, mas que funciona muito bem: tensão varia pelo termistor que é comparada a um zener e o resultado você pode deduzir.

Troquei também o cooler vagabundo que tinha nela por um Delta (dispensa apresentações) e montei tudo, deixando o termistor em contato com o dissipador. Problem solved!

Silêncio reinando no ambiente.


SFL2PRO II - Filtro de linha profissional microprocessado com PROCATER embarcado

Uma evolução natural da primeira versão de filtro de linha para áudio diyPowered, o SFL2PRO II foi repensado de maneira a oferecer mais recursos de análise e correção da rede elétrica com monitores visuais e proteção extra, adicionando o PROCATER em sua linha de filtragem e proteção

Mais um daqueles projetos que vão se arrastando e que parecem não sair do lugar. Tanto que nem esteve na página 'Produção', como de costume. A história é que, de uns tempos para cá, venho sofrendo mais do que o normal com ruídos e estalos na minha rede. Nada mudou internamente, mas como estamos numa estação extremamente quente, onde o consumo geral aumenta em linhas de distribuição externas obsoletas e despreparadas para altas demandas domésticas, é notável a queda na qualidade. Isso implica não somente na qualidade da energia elétrica, mas também impacta diretamente na segurança dos equipamentos mais sensíveis, como meu set de áudio. Um exemplo prático é quando o chuveiro é ligado em horários de pico: ouve-se facilmente um ruído na faixa dos médio-agudos/agudos, tornando difícil a vida de quem preza pela qualidade da sua audição.

Há algum tempo retirei de uso o SFL2PRO por questões de melhorias. É como mixagem: a gente sempre acha que deveria ter feito alguma coisa diferente, depois que termina. Acabei deixando ele tempo demais parado na bancada, tanto tempo que precisei acelerar esse upgrade depois desses ataques audíveis e violentos no meu set. Então, vamos ao que interessa.

O que mudou?

Praticamente tudo. Na versão original, apenas filtros avançados e um LED indicador de ligado. Já tinha o PROCATER embarcado, mas era só isso. Na segunda versão do filtro, temos:

  • Painel completo, com leitura da tensão, LEDs indicadores de status e monitoria (saídas ligadas, tensão de referência e programa rodando normalmente)
  • Filtros principais ativos e compartilhados nas três saídas conjugados com filtros extras também ativos dedicados por tomada
  • PROCATER embarcado para maior segurança de operação (corta as saídas, mas mantém o sistema ativo)
  • Relés de controle das saídas dedicados, um por fase, controlados via código para temporizar retorno de fornecimento, subtensão e sobretensão
  • Fusível interno dimensionado para uso com o set atual (expansível a + 20% de folga para eventuais novos modulares)
  • Conexões internas de grandes dimensões para evitar gargalos e aquecimento
  • Aterramento full
  • Reforço na fixação das peças internas (para evitar possíveis curtos-circuitos de contato peça a peça)
  • Soldas sem miséria (reforçadas)
  • Monitor da rede elétrica (voltímetro frontal, LEDs indicadores, PROCATER etc.) controlado por microcontrolador
  • Reforço da carcaça (já que a ideia era deixar o filtro por baixo de todos os módulos)
  • Alimentação da lógica dedicada e isolada fisicamente
  • Capacidade total de 10A com limitação de 6A para operação em segurança
  • Atuação de varistores e centelhadores para maior segurança
  • Corte de emergência (fusível principal) para todo o sistema, protegendo tudo simultaneamente
  • LED indicador no painel frontal para fusível principal aberto

As primeiras impressões ao testar o novo filtro no set foi de clareza e vida nos timbres, e mais pureza do que tive um dia, na primeira versão do SFL2PRO. Nenhum clique, ruído, nadinha. Fora que só de olhar pro carinha ali dando a vida pelos amigos modulares, já rola aquele psicológico bacana de que, agora, tudo está ok

E sem perceber, reproduzi o PROCATER de forma lógica, diferentemente das versões analógicas monofásicas individuais, que eram produzidas com 'eletrônica pura'. A primeira vez, no PROCATER ADVANCE, e agora, embarcado no SFL2PRO II. É a evolução natural dos projetos mais avançados, para reduzir espaço físico, agregar valor, integrar funcionalidades e cortar custos finais e tempo de produção. 




Inicializando (LED amarelo = tensão de referência OK)

Em operação (LEDs vermelhos = saídas ON, LED verde = sistema OK)

Inicializando 2 (teste dos segmentos, para verificar visualmente se
há algum danificado, o que impediria a leitura correta pelo operador)

E o set diyPowered ganhando energia limpa!

Detalhe (desligado)

E um gifzinho para ilustrar o start do carinha

** 13/01/2018

Melhorias na amostragem de tensão, aprimoramento dos filtros de alta frequência e upgrade dos divisores de tensão de referência.

SM1 Platinum - Switch de áudio true bypass com relés de platina

Uma evolução natural do clássico M1, produzido e já publicado há alguns anos, o SM1 Platinum agrega todos os valores de produção DIY com relés de seleção com contatos de platina e bobinas duplas

Não há muito o que ser falado sobre o SM1 além dos detalhes técnicos mais recentes. É um switch de áudio que será utilizado na sala para permitir a audição da TV e da jukebox com mais duas entradas extras, que não existiam no M1 - que era para duas entradas (dois canais) e switch digital - além do generoso display indicativo muito elegante por trás do espelho fumê do gabinete. Esse gabinete, aliás, era de um receptor de satélite mais moderninho, que serviu perfeitamente para o projeto. Adoro trabalhar com esses gabinetes.

Os relés especiais

Cinco relés por segmento
Esses relés foram doados pelo meu sogro, gente fina e expert em telefonia e eletrônica, ex-funcionário da Ericsson do Brasil e da extinta CRT, no Rio Grande do Sul. Ele possuía algumas caixas desses relés e quando eu soube da extrema precisão e qualidade deles, não pensei duas vezes em chorar algumas caixinhas. Ele me presenteou com seis delas, duas das quais foram empregadas no SM1 Platinum - antes que me perguntem: SM1 de Super M1, e o 'Platinum' eu me recuso a ter que explicar... Pretendo colocar alguns relés à venda na Lojinha diyPowered, para quem quiser utilizar em projetos similares.

Últimas quatro caixinhas
Cada segmento possui cinco relés integrados com bobinas duplas e contatos de platina. Segundo ele, eram usados nas comutações das centrais, que dependiam de precisão e qualidade. Não sei qual a tensão de trabalho deles, mas fui testando a partir dos 5V e com 8V eles já fechavam os contatos. Como são duplas e trabalhavam em centrais grandes, a tensão de trabalho deveria girar entre 12V e 48V. Liguei cada bobina dupla em série para evitar aquecimento/alto consumo e trabalhei com folga em 12V, mantendo os contatos muito firmes e o aquecimento das bobinas em boa margem de segurança.

Como tinha 5 relés disponíveis em cada segmento, no total de 10, utilizei dois deles para controle da saída de áudio. Isso significa que, quando nenhuma das fontes de sinal está selecionada, a saída dele é cortada, evitando cliques ou algum sinal indesejado nas comutações. Ou seja, temos 4 canais utilizando 8 relés, um para cada canal, mais dois extras que cortam ou conectam as saídas. Assim, sempre temos quatro relés comutados ao mesmo tempo, dois de cada fonte de sinal (L/R) e dois das saídas.

A fonte de alimentação

A fonte de alimentação do SM1 Platinum é das mais simples - e não confunda 'fonte das mais simples' com 'qualquer projetinho meia boca de fonte' - já que não temos qualquer tipo de circuito atuando sobre os sinais. Um trafo de 15V x 500mA fornecendo algo em torno de 20V em aberto e dois reguladores, um de 12V para os relés e outro de 5V para a lógica. Tudo perfeitamente casado e montado, como todo diyPowered! 

E aqui fica um bom exemplo para iniciantes ou para veteranos preguiçosos do mundo DIY: por mais simples que seja o projeto, projete uma boa fonte de alimentação.

Circuito de controle

Já disse antes e continuo repetindo que a utilização de microcontroladores nos projetos DIY é um grande salto na criação de funções, na economia de componentes e de tempo de bancada, e que nunca devem ser empregados para funções simples que podem ser facilmente resolvidas com eletrônica pura. Infelizmente - para alguns, é claro! - a onda dos microcontroladores está transformando pessoas inteligentes em pessoas acomodadas e rotuladas, justamente por acharem que tudo se resolve em código.

E mais uma vez temos o ATMEGA328P-PU como controle principal de um projeto diyPowered. O código é dos mais simples, somente controla o vai e vem dos relés, utilizando dois botões no painel, um LED bicolor e um display LCD 16x2. Simples assim.

Ao ligar o SM1 Platinum, o display dá as boas vindas, exibe a mensagem 'select a source to listen', acende o LED laranja e passa para a tela de operação, exibindo cada canal de entrada. Um toque em CH+ e a primeira fonte é selecionada, alternando do LED laranja para o LED azul e assim sucessivamente até a quarta fonte, mantendo-se aceso o LED azul quando alguma fonte está ativa. Para retornar fontes, CH- até voltar a tela inicial 'select a source to listen', apagando o LED azul e acendendo novamente o LED laranja. Muito útil para dar um 'mute' no sistema para trocar cabos de lugar sem ter que desligar e religar tudo de novo.

A grande vantagem do SM1 Platinum sobre seu antecessor M1 é justamente o switch. No M1 temos o famoso 4066 comutando os sinais com um pré-amplificador compensativo na saída. No SM1 Platinum temos os relés especiais comutando os sinais de áudio sem qualquer circuito ativo, promovendo um true bypass mais que perfeito, geralmente encontrado somente nos grandes e caros equipamentos hi-end. A grande sacada nessa seleção de sinais é utilizar lógica digital, como foi feito, ao invés de chaves de seleção no painel. Um display informativo sempre fica melhor nesses projetos.

Porta serial

Como o gabinete já possuía uma porta serial, decidi mantê-la para eventuais atualizações do SM1 Platinum - que certamente acontecerão. Fica mais fácil somente injetar o novo código pela porta serial do que recolher o equipamento, abrir, retirar o MC... Nos projetos futuros que necessitem dessas atualizações, certamente vou manter uma porta serial externa disponível também.

No mais, o sistema trabalha folgado, de forma muito precisa e elegante. Numa versão mais funcional do SM1 Platinum, poderia até utilizar um display VFD (que deixa tudo mais bonito) e entradas de sinal dedicadas para tape, phono, etc. com seus níveis definidos e prontos para conexão direta. Quem sabe até uns VU's... Mas isso fica para um próximo nível.


Tela inicial já conhecida por aqui

Tela de apresentação e versão

Já operando...

...e aguarda seleção

Selecionada fonte 01

Selecionada fonte 02

Visão aberta aguardando seleção (LED laranja = mute)

Porta serial para atualizações

Referência de dimensões

Entradas RCA (minhas favoritas)

Compartilhe com alguém!