7 dicas para projetos DIY, seja você iniciante ou veterano

Pois bem. Vou tentar me resumir em sete grandes dicas para projetos DIY, seja você um novato ou um veterano, para que seu tempo seja otimizado e para que o produto final tenha mais qualidade. E se você não leu a série de dois capítulos 'Planejamento e execução de projetos DIY', seria muito produtivo que o fizesse antes de continuar o artigo atual.


Dica #1 - Planejamento prévio

Não adianta juntar as peças na bancada e sair corroendo placa se você não planejou suas ações antes. Isso vai gerar desperdício de tempo e de material, caso você cometa algum erro ou se esqueça de algum detalhe que deveria estar ali mas não está. Abra um documento de texto e vá anotando os passos do seu projeto. Ou até, paralela ou exclusivamente, tenha um caderno e uma caneta sempre à mão para eventuais anotações e ideias. Meus projetos sempre saem do papel, geralmente, antes de qualquer teste prático em bancada. E sou resistente a simular circuitos no computador: prefiro fazer tudo fisicamente. Então, resumindo, planejamento é fundamental para evitar projetos furados, dispendiosos e que vão tomar muito tempo em retrabalho.

Dica #2 - Testes

Se você seguiu a dica #1, certamente vai seguir a dica #2: teste tudo de forma incansável, verifique aquecimentos, tensões incorretas, variações de corrente ou fugas em circuitos. Verifique a massa, certifique-se de que tudo está conforme antes de qualquer coisa. Se é um projeto de áudio ou que envolva RF, seja ainda mais cuidadoso. Uma ou duas trilhas mal traçadas na PCI podem se transformar em antenas que não deveriam existir, colocando seu projeto em risco e fazendo você perder um tempo precioso analisando um circuito que está montado corretamente, mas que ficou prejudicado pelo layout da placa. Outro erro clássico nos projetos é montar uma fonte mal dimensionada, pobre ou ruidosa. Antes de alimentar seu precioso circuito, monte a fonte com toda atenção, teste quantas vezes achar necessário e somente dê o circuito por finalizado quando realmente sentir confiança na sua montagem. Uma fonte fora de padrão certamente vai comprometer seu projeto, tomando mais tempo em bancada do que o necessário.

Dica #3 - Componentes

Nunca, mas nunca trate seus componentes sem o devido respeito. Se você é do tipo que lê datasheet, sabe muito bem dos cuidados que se deve ter para evitar a perda do CI ou do FET. Um descuido e você conecta um circuito com a polaridade invertida, ou se engana com a pinagem na hora da montagem, se esquece de cuidados básicos e coloca seu projeto em risco. Depois, perde mais tempo refazendo o projeto do que o testando, de fato. Selecione cuidadosamente os componentes, teste cada um deles antes de colocar no circuito, cuide os valores de tensão de trabalho dos capacitores, a corrente máxima dos diodos e não ultrapasse os limites de cada componente. De preferência, mantenha uma margem de segurança para componentes ativos, como os capacitores e os diodos da fonte de alimentação: se você tem uma fonte que fornece 18V em aberto (sem carga) mas que com carga (ou regulador) cai para 12V - que é a tensão necessária para alimentar seu projeto - tenha o bom senso de não utilizar um eletrolítico de 16V, como se vê por aí. Certamente vai acontecer o inevitável, mais cedo ou mais tarde: esse capacitor vai estufar e passar a não trabalhar corretamente. O resultado num circuito de áudio, por exemplo? Ruídos fortes e mau funcionamento, estalos e, na maior maré de azar, a queima das saídas. Tomando por exemplo meus projetos, no HS-1875Mi tenho uma fonte simétrica de +/- 20V x 5A com 17600MF de reserva em dois bancos de 8800MF cada. Sabe a tensão de trabalho dos capacitores? 35V. Sim, margem de segurança alta para evitar problemas futuros. Caso tenha curiosidade, tenha a oportunidade de desmontar um receiver ou amplificador de potência dos anos 80/90 e você entenderá o porquê de esses aparelhos ainda funcionarem até hoje, muitas vezes com componentes intactos e originais de fábrica. 

Dica #4 - Montagem

Particularmente, prefiro as montagens em caixas metálicas. Além da grande resistência mecânica, também fornece blindagem efetiva aos circuitos, afastando qualquer ruído irradiado ou parasitas do gênero. Claro que é mais complicado trabalhar com metais, principalmente na furação de painéis, mas vale o trabalho que dá. Quando for montar seu projeto, após todas as dicas anteriores, atente-se ao organismo interno que você está criando. Quanto mais organizado, melhor trabalhará seu organismo. Passe cabos de forma que a estética não esteja acima do bom senso de isolar a alimentação dos sinais, use cabos de qualidade, avalie corretamente os componentes ativos para não economizar no dissipador de calor e, sempre que necessário, utilize cabos blindados para sinal. Outra coisa muito importante é aterrar todo e qualquer ponto metálico 'solto' dentro do gabinete, como o corpo de potenciômetros, dissipadores de calor, suportes metálicos e tudo o que puder se revelar uma antena. Se o gabinete for metálico, esse problema se torna quase nulo, mas por questões de qualidade, o faça da mesma forma. No final de tudo, aterre o gabinete também, de uma forma que não haja loop de terra, casando tudo de forma bonita e técnica, sem aranhas e emaranhados de fios medonhos, por favor. Se o case for pequeno, avalie a necessidade de isolar cada circuito fisicamente.

Dica #5 - Isolando circuitos

Por ter montado muitos projetos em gabinetes compactos, acabei aprendendo essa na marra. Se você deixar um circuito sensível muito próximo do trafo ou de algum componente similar, certamente vai ganhar ruído irradiado. E isso vale para circuitos muito próximos, que podem influenciar negativamente no funcionamento coletivo, seja irradiando ou conduzindo de forma parasita alguma frequência. Por isso, sempre que necessário, isole fisicamente os circuitos utilizando a fantástica gaiola de Faraday - há muitas formas de criar uma, basta estudar sobre o assunto. Esses cuidados também se aplicam ao layout da placa de circuito impresso, para que trilhas críticas não se cruzem ou circuitos não estejam distantes o suficiente para evitar interferências. Um descuido, nesse caso, pode invalidar totalmente o funcionamento do projeto, principalmente se tratando de circuitos de RF ou com osciladores precisos.

Dica #6 - Revisão final

Antes de declarar finalizado um projeto, mesmo após seguir rigorosamente cada etapa de testes, faça o mais importante: teste tudo novamente! Siga o equipamento da entrada AC até cada setor. Se tudo está de acordo, cada cabo passado corretamente, tudo bem afixado, nenhum curto ou placa tocando onde não deve tocar, daí sim: ligue o equipamento e comece a testar as tensões da fonte, se tudo bate e está correto. Verifique se algum componente está aquecendo além do previsto no projeto e tome as providências. Um exemplo clássico é na montagem de fontes, de inversores ou de amplificadores de potência, quanto ao dissipador de calor escolhido. Quem tem experiência em montagem e desenvolvimento, seleciona dissipador no olho, sem pensar. Mas quem chegou dia desses, pode se confundir e aplicar menos área do que o necessário. Vejo muitos projetos com LM, TDA, IRF, TIP e pontes de diodos com menos área dissipativa do que o ideal, e com menos área ainda do que o desejável num projeto seguro. O resultado é sempre o mesmo: vida útil reduzida e um projeto fadado ao fracasso. E quando falo em fracasso, falo de equipamentos que deveriam funcionar milhares de horas sem qualquer problema, mas que terminam condenados por imperícia ou por economia de projeto. Ouço muito o termo 'mas estava no datasheet' na tentativa de justificar um projeto falho e o que eu tenho a dizer sobre isso é o seguinte: datasheet não ensina técnico, apenas parametriza suas aplicações. Se o datasheet diz que tal componente dissipa 40W, obviamente que isso é um parâmetro máximo e jamais um limite máximo para seu projeto. Seguindo cegamente o datasheet, sem possuir experiência ou senso crítico, você encurtará drasticamente a vida útil do componente, embora ele vá funcionar 'normalmente' dentro do seu circuito. Por isso, tenha bom senso.

Dica #7 - Projeto finalizado nunca está pronto!

Se todas as dicas anteriores foram úteis, dentre seus próprios métodos de produção e desenvolvimento, você finalizou um projeto. Mas sempre fica aquela vontade de ter feito alguma coisa diferente, uma função que você não pensou na época e que gostaria de aplicar agora. E nem sempre dá certo ou é possível. Isso porque projeto fechado é projeto fechado, mas você tem uma linha, agora. Dentro do mesmo projeto, crie variações, uma nova versão, ou até uma versão experimental. Você estará exercitando suas técnicas e descobrindo mais do universo DIY. Mas deixe o projeto atual intacto, a menos que você apenas queira atualizar um microcontrolador ou alterar algum parâmetro interno sem alterar painéis e funções principais. 

A ideia básica por trás do DIY é criar e por isso, crie! Encontre maneiras de desenvolver novas soluções a partir das grandes ideias que você já teve, como forma de aperfeiçoamento pessoal, profissional e executivo. Um projeto finalizado nunca está pronto, mas um projeto finalizado é um ponto de partida prontinho para novas soluções, novas ideias e grandes projetos. 

Conclusão

Imagine quanto tempo você vai levar para desenvolver uma fonte de alimentação bacana e segura. Agora, leve em conta que essa mesma fonte de alimentação poderia servir de base para inúmeros projetos, e que esse tempo que você dedicou no desenvolvimento dessa fonte será poupado, podendo ser aplicado aos demais setores do projeto. Isso é DIY, é desenvolver e produzir de forma ascendente, sem olhar para os erros passados como falhas, mas sim como degraus evolutivos para seus projetos.

PR 1500 - Fonte de bancada ajustável de precisão com LM317 1,2V a 15,1V 2A

Operando com tensões baixas e precisas com corrente máxima de 2A, a PR 1500 é um projeto conceito diyPowered que alia performance com confiança para alimentar equipamentos sensíveis em testes de bancada

Este é um projeto que foi iniciado por conta de outro projeto. Durante os estudos e testes do PROCATER ADVANCE, precisei de uma fonte precisa para baixas tensões entre 1.2V e 4.2V com correntes mínimas de 250mA. Claro que tenho uma fonte na bancada, mas ela não me fornece tensões tão baixas assim. Acabei por levantar um circuitinho básico de teste que me permitisse operar essas tensões de forma confiável e estável, para que pudesse efetuar meus testes. Ao fim do projeto do PROCATER ADVANCE, me vi com aquela fontezinha pequena, simples e precisa que tanto me foi útil naquele momento. Decidi fazer desse quebra galho uma ferramenta oficial de bancada. E assim nasceu a PR 1500.

Obviamente que se tratava de um circuito simples, onde eu regulava a tensão que precisava na hora via trimpot e multímetro. Conferia toda hora se não havia se alterado, antes de testar alguma coisa, porque não havia visual algum me garantindo a tensão na saída dele. Por essa razão, decidi implantar um voltímetro e alguns indicadores legais para uma fonte tão importante para minha bancada. Como sou chato e perfeccionista, o código que deveria levar algumas horas para ficar pronto, levou alguns dias. Isso porque eu queria colocar algumas funções importantes me que permitissem perceber algum evento sem ter que olhar para o display. Porque, normalmente, a gente seleciona a tensão de teste e se volta para o circuito na bancada; não fica olhando para a fonte o tempo todo.


Principais características da PR 1500

Seleção, amostragem e saídas confiáveis: tudo muito bem pensado para evitar problemas durante testes com circuitos caros e complicados. A seleção é fina, oferecendo de 1.2V até 15.1V com escalabilidade de 0,2V a mais ou a menos facilmente selecionável; corrente máxima de 2A em qualquer tensão selecionável com proteção ativa; a amostragem do display é clara e rápida e as saídas possuem proteções ativas contra curtos-circuitos, consumo excessivo (que poderia causar danos aos circuitos da fonte) e sobretensão de pico com alertas visuais e sonoros para todos esses eventos.

Acionamento de ventilação auxiliar quando necessário: para evitar trabalhar com aquecimento constante, foi implantado um sistema muito eficaz de ventilação, que é acionado sempre que o consumo se aproxima dos 700mA ou em seleções de tensão acima de 5V, independentemente da corrente utilizada. É uma forma de aumentar a saúde dos componentes, visto que o gabinete é compacto e com poucas aletas de ventilação natural.

Alimentação lógica independente da alimentação de linha: fundamento que deveria ser seguido pelos fabricantes - e que é seguido pelos melhores, com certeza - é manter a lógica isolada do resto. Um circuito lógico como esse ou até mais simples pode sofrer influências ruins se alimentado na mesma linha que os circuitos em teste na bancada. Um curto-circuito ou uma queda brusca na corrente de linha pode fazer com que o microcontrolador seja reiniciado ou até danificado, já que temos portas ligadas fisicamente aos circuitos em teste para medição da tensão de saída. Em suma, temos fontes distintas, uma para lógica (LEDs, display, backlight, microcontrolador, cooler, etc.) e outra dedicada para linha. A tensão da fonte lógica se aproxima dos 16V x 500mA (em aberto) e é retificada, filtrada e aplicada a dois reguladores, um de 12V (periféricos) e outro de 5V (lógica, display e LEDs) formando um conjunto confiável e descomplicado. Já na fonte dedicada de linha, temos uma tensão de 18V x 2A (em aberto) que é aplicada a um banco de capacitores formando uma linha com 6900MF, com todos os desacoplamentos e filtros necessários até chegar no circuito regulador de saída. Claro que (mais uma vez) vão dizer que sou exagerado, que não precisava de tanta capacitância, que não precisava de trafos com essa capacidade, que desperdicei potência efetiva que eu poderia ter utilizado, que isso e que aquilo e aquele monte de bla bla bla digno de quem não viu ou de quem não quer ver eletrônica de verdade. Pois bem, como sempre falei aqui, meus projetos são feitos para durar. Trato os componentes com respeito e espero um resultado muito melhor do que coloco no papel. Isso é, entre outras coisas, trabalhar com margem de segurança. Então, para criar projetinho fuleiro, prefiro não fazer.

Monitor de corrente: no canto inferior esquerdo do display é destacada e palavra 'LOAD' com um ícone de uma 'alavanca'. Quando a fonte atinge o consumo de 700mA em qualquer tensão selecionada ou a partir dos 5V, essa 'alavanca' 'passa para cima', indicando que o consumo de corrente foi aumentado, acionando o cooler e o LED amarelo. Também há outro ícone no display que serve como indicador de 'health' da fonte: um rostinho simpático formado por =] só que rotacionado 90º à direita. Quando essa 'alavanca' de corrente 'sobe', o rostinho simpático muda de =] para =O indicando o mesmo estado.

Funcionamento discreto: dificilmente o circuitinho da PR 1500 vai abrir o bico e chorar. Mesmo que você leve o consumo em teste ao limite dela. Vai acionar cooler? Vai. Vai aquecer? Claro. Mas abrir o bico?! Não vai. Isso porque foi feito para durar, foi feito para trabalhar sem chororô e sem frescura. Por isso é confiável.

Eventos de erro

Caso a fonte encontre algum problema na partida, durante a checagem que é impressa no display como 'Check things...', o LED vermelho se acenderá, bips serão emitidos até que a fonte seja desligada e o display exibirá a mensagem 'Restart now!'. Ao religá-la, o autoteste será refeito. Se o problema for eliminado, a mensagem 'Ready' será mostrada na tela, conforme partida padrão (fotos abaixo!) da fonte. O LED vermelho indica alguma falha e os bips servem como alerta sonoro para eventos como falha na tensão da linha, erro no circuito regulador, falha na lógica, curto-circuito na saída da linha, cooler inoperante ou girando com dificuldade, temperatura excedente no circuito regulador ou no interior do gabinete (indicaria falha geral, que poderia ser um dos trafos ou algum setor no circuito lógico) e falha na amostragem ou coleta de tensão. Todos os erros foram testados na bancada e a fonte se comportou conforme o esperado, suspendendo a corrente na saída de linha e emitindo todos os alertas.

A lógica é baseada no ATMEGA328P/PU, assim como os últimos projetos do tipo. Tenho gostado de trabalhar com esse MC por conta do custo e da facilidade de operação. Também pela rapidez e pelas inúmeras alternativas para se fazer a mesma coisa, isso é muito importante para quem pratica DIY. Claro que algumas atualizações serão feitas daqui em diante, visando melhorias na fonte e mais qualidade final. Mas assim como a maioria dos projetos daqui, a PR 1500 é um protótipo, e como tal, não deve ser avaliada como um produto final.

E mais uma vez, lixo eletrônico ganhando vida. De novos mesmo, somente o ATMEGA328P/PU e o display. Sem mais por enquanto, as fotos.


Painel frontal com LED power (verde) e display

Vista inferior

Painel traseiro com fusível, cabo AC e chave (odeio projeto feito às
pressas: sempre dá alguma merda encrenca que não tem volta. Nesse
caso, esse parafuso em cima deveria ter ficado na parte inferior, mas
eu medi tudo errado e o resultado está aí. Depois dessa, nem quis
abrir a furação do cooler nesse painel traseiro...)

Fonte sendo ligada 1

Fonte sendo ligada2

Fonte sendo ligada3: faz check in das tensões e estado da linha, aciona
cooler e verifica temperatura do dissipador e gabinete (interno)

Fonte sendo ligada 4: se passar nos testes, estará pronta para uso

Fonte ligada e pronta após os testes iniciais (note a informação
útil acima no display, indicando acionamento da ventilação auxiliar)

Esta era uma das tensões que eu precisava nos testes (note espaço
dedicado aos eventos na parte superior direita, ao lado de Ready!)

Tensão máxima da fonte

Tensão limite onde o cooler é acionado

Quando o cooler é acionado, o LED amarelo permanece aceso

Compartilhe com alguém!