SFL2PRO II - Filtro de linha profissional microprocessado com PROCATER embarcado

Uma evolução natural da primeira versão de filtro de linha para áudio diyPowered, o SFL2PRO II foi repensado de maneira a oferecer mais recursos de análise e correção da rede elétrica com monitores visuais e proteção extra, adicionando o PROCATER em sua linha de filtragem e proteção

Mais um daqueles projetos que vão se arrastando e que parecem não sair do lugar. Tanto que nem esteve na página 'Produção', como de costume. A história é que, de uns tempos para cá, venho sofrendo mais do que o normal com ruídos e estalos na minha rede. Nada mudou internamente, mas como estamos numa estação extremamente quente, onde o consumo geral aumenta em linhas de distribuição externas obsoletas e despreparadas para altas demandas domésticas, é notável a queda na qualidade. Isso implica não somente na qualidade da energia elétrica, mas também impacta diretamente na segurança dos equipamentos mais sensíveis, como meu set de áudio. Um exemplo prático é quando o chuveiro é ligado em horários de pico: ouve-se facilmente um ruído na faixa dos médio-agudos/agudos, tornando difícil a vida de quem preza pela qualidade da sua audição.

Há algum tempo retirei de uso o SFL2PRO por questões de melhorias. É como mixagem: a gente sempre acha que deveria ter feito alguma coisa diferente, depois que termina. Acabei deixando ele tempo demais parado na bancada, tanto tempo que precisei acelerar esse upgrade depois desses ataques audíveis e violentos no meu set. Então, vamos ao que interessa.

O que mudou?

Praticamente tudo. Na versão original, apenas filtros avançados e um LED indicador de ligado. Já tinha o PROCATER embarcado, mas era só isso. Na segunda versão do filtro, temos:

  • Painel completo, com leitura da tensão, LEDs indicadores de status e monitoria (saídas ligadas, tensão de referência e programa rodando normalmente)
  • Filtros principais ativos e compartilhados nas três saídas conjugados com filtros extras também ativos dedicados por tomada
  • PROCATER embarcado para maior segurança de operação (corta as saídas, mas mantém o sistema ativo)
  • Relés de controle das saídas dedicados, um por fase, controlados via código para temporizar retorno de fornecimento, subtensão e sobretensão
  • Fusível interno dimensionado para uso com o set atual (expansível a + 20% de folga para eventuais novos modulares)
  • Conexões internas de grandes dimensões para evitar gargalos e aquecimento
  • Aterramento full
  • Reforço na fixação das peças internas (para evitar possíveis curtos-circuitos de contato peça a peça)
  • Soldas sem miséria (reforçadas)
  • Monitor da rede elétrica (voltímetro frontal, LEDs indicadores, PROCATER etc.) controlado por microcontrolador
  • Reforço da carcaça (já que a ideia era deixar o filtro por baixo de todos os módulos)
  • Alimentação da lógica dedicada e isolada fisicamente
  • Capacidade total de 10A com limitação de 6A para operação em segurança
  • Atuação de varistores e centelhadores para maior segurança
  • Corte de emergência (fusível principal) para todo o sistema, protegendo tudo simultaneamente
  • LED indicador no painel frontal para fusível principal aberto

As primeiras impressões ao testar o novo filtro no set foi de clareza e vida nos timbres, e mais pureza do que tive um dia, na primeira versão do SFL2PRO. Nenhum clique, ruído, nadinha. Fora que só de olhar pro carinha ali dando a vida pelos amigos modulares, já rola aquele psicológico bacana de que, agora, tudo está ok

E sem perceber, reproduzi o PROCATER de forma lógica, diferentemente das versões analógicas monofásicas individuais, que eram produzidas com 'eletrônica pura'. A primeira vez, no PROCATER ADVANCE, e agora, embarcado no SFL2PRO II. É a evolução natural dos projetos mais avançados, para reduzir espaço físico, agregar valor, integrar funcionalidades e cortar custos finais e tempo de produção. 




Inicializando (LED amarelo = tensão de referência OK)

Em operação (LEDs vermelhos = saídas ON, LED verde = sistema OK)

Inicializando 2 (teste dos segmentos, para verificar visualmente se
há algum danificado, o que impediria a leitura correta pelo operador)

E o set diyPowered ganhando energia limpa!

Detalhe (desligado)

E um gifzinho para ilustrar o start do carinha

** 13/01/2018

Melhorias na amostragem de tensão, aprimoramento dos filtros de alta frequência e upgrade dos divisores de tensão de referência.

Bootloader no ATMEGA328P-PU - a primeira vez a gente nunca esquece!

Conexão necessária (imagem: Atmaker)

Catando sucatas para passar o tempo e organizar o que convém, achei um ATMEGA328P-PU perdido. Me lembrei, logo em seguida, o porquê de ele estar ali perdido: após servir de testes para um projeto, ele não gravava mais. Ficou com o último código 'travado' na memória e não tinha o que fazer. Como não precisava dele no momento, ficou para ver depois. E esse depois chegou. Li muita enrolação na Internet, soluções dispendiosas e nada práticas, até chegar no site Atmaker (placas standalone de excelente qualidade) onde encontrei um super tutorial de como gravar o bootloader que utilizava o ATMEGA328P-PU 'danificado' na placa standalone, eliminando a necessidade da utilização de duas IDE. Era a minha última tentativa antes de condenar o CI. E lá fui eu, montei tudo bonitinho, com todo cuidado na plaquinha que eu já tinha pronta dos testes de bancada e, em 3 segundos, o bootloader estava gravado. Nunca precisei gravar o bootloader porque nenhum dos CIs que eu comprei até hoje veio sem estar gravado, daí, para mim, executar o procedimento é ainda novidade.

Na hora da verdade, gravei o 'blink', meio desacreditado se ia funcionar. E funcionou! Para tirar a prova, gravei dois outros projetos mais brutos nele - códigos do SM1 Platinum e do PROCATER ADVANCE - e o bicho gravou e rodou sem dramas. Eu acabara de 'salvar' um MC que estava fadado ao esquecimento!

Logo do site Atmaker
Gostaria de deixar registrado aqui, antes de mais nada, que essa postagem não tem jabá. Não possuo qualquer vínculo com o site Atmaker ou com seus parceiros comerciais e somente estou mencionando o tutorial e elogiando as placas porque reconheço quando alguém ou quando alguma empresa trabalha bem.

No mais, siga o tutorial quando seu ATMEGA328P-PU decidir não gravar mais ou quando surgir algum probleminha misterioso e não condene o CI antes de fazer o procedimento. Já vi muita gente condenando IDE e MC por conta disso sem sequer tentar solucionar a questão.

SM1 Platinum - Switch de áudio true bypass com relés de platina

Uma evolução natural do clássico M1, produzido e já publicado há alguns anos, o SM1 Platinum agrega todos os valores de produção DIY com relés de seleção com contatos de platina e bobinas duplas

Não há muito o que ser falado sobre o SM1 além dos detalhes técnicos mais recentes. É um switch de áudio que será utilizado na sala para permitir a audição da TV e da jukebox com mais duas entradas extras, que não existiam no M1 - que era para duas entradas (dois canais) e switch digital - além do generoso display indicativo muito elegante por trás do espelho fumê do gabinete. Esse gabinete, aliás, era de um receptor de satélite mais moderninho, que serviu perfeitamente para o projeto. Adoro trabalhar com esses gabinetes.

Os relés especiais

Cinco relés por segmento
Esses relés foram doados pelo meu sogro, gente fina e expert em telefonia e eletrônica, ex-funcionário da Ericsson do Brasil e da extinta CRT, no Rio Grande do Sul. Ele possuía algumas caixas desses relés e quando eu soube da extrema precisão e qualidade deles, não pensei duas vezes em chorar algumas caixinhas. Ele me presenteou com seis delas, duas das quais foram empregadas no SM1 Platinum - antes que me perguntem: SM1 de Super M1, e o 'Platinum' eu me recuso a ter que explicar... Pretendo colocar alguns relés à venda na Lojinha diyPowered, para quem quiser utilizar em projetos similares.

Últimas quatro caixinhas
Cada segmento possui cinco relés integrados com bobinas duplas e contatos de platina. Segundo ele, eram usados nas comutações das centrais, que dependiam de precisão e qualidade. Não sei qual a tensão de trabalho deles, mas fui testando a partir dos 5V e com 8V eles já fechavam os contatos. Como são duplas e trabalhavam em centrais grandes, a tensão de trabalho deveria girar entre 12V e 48V. Liguei cada bobina dupla em série para evitar aquecimento/alto consumo e trabalhei com folga em 12V, mantendo os contatos muito firmes e o aquecimento das bobinas em boa margem de segurança.

Como tinha 5 relés disponíveis em cada segmento, no total de 10, utilizei dois deles para controle da saída de áudio. Isso significa que, quando nenhuma das fontes de sinal está selecionada, a saída dele é cortada, evitando cliques ou algum sinal indesejado nas comutações. Ou seja, temos 4 canais utilizando 8 relés, um para cada canal, mais dois extras que cortam ou conectam as saídas. Assim, sempre temos quatro relés comutados ao mesmo tempo, dois de cada fonte de sinal (L/R) e dois das saídas.

A fonte de alimentação

A fonte de alimentação do SM1 Platinum é das mais simples - e não confunda 'fonte das mais simples' com 'qualquer projetinho meia boca de fonte' - já que não temos qualquer tipo de circuito atuando sobre os sinais. Um trafo de 15V x 500mA fornecendo algo em torno de 20V em aberto e dois reguladores, um de 12V para os relés e outro de 5V para a lógica. Tudo perfeitamente casado e montado, como todo diyPowered! 

E aqui fica um bom exemplo para iniciantes ou para veteranos preguiçosos do mundo DIY: por mais simples que seja o projeto, projete uma boa fonte de alimentação.

Circuito de controle

Já disse antes e continuo repetindo que a utilização de microcontroladores nos projetos DIY é um grande salto na criação de funções, na economia de componentes e de tempo de bancada, e que nunca devem ser empregados para funções simples que podem ser facilmente resolvidas com eletrônica pura. Infelizmente - para alguns, é claro! - a onda dos microcontroladores está transformando pessoas inteligentes em pessoas acomodadas e rotuladas, justamente por acharem que tudo se resolve em código.

E mais uma vez temos o ATMEGA328P-PU como controle principal de um projeto diyPowered. O código é dos mais simples, somente controla o vai e vem dos relés, utilizando dois botões no painel, um LED bicolor e um display LCD 16x2. Simples assim.

Ao ligar o SM1 Platinum, o display dá as boas vindas, exibe a mensagem 'select a source to listen', acende o LED laranja e passa para a tela de operação, exibindo cada canal de entrada. Um toque em CH+ e a primeira fonte é selecionada, alternando do LED laranja para o LED azul e assim sucessivamente até a quarta fonte, mantendo-se aceso o LED azul quando alguma fonte está ativa. Para retornar fontes, CH- até voltar a tela inicial 'select a source to listen', apagando o LED azul e acendendo novamente o LED laranja. Muito útil para dar um 'mute' no sistema para trocar cabos de lugar sem ter que desligar e religar tudo de novo.

A grande vantagem do SM1 Platinum sobre seu antecessor M1 é justamente o switch. No M1 temos o famoso 4066 comutando os sinais com um pré-amplificador compensativo na saída. No SM1 Platinum temos os relés especiais comutando os sinais de áudio sem qualquer circuito ativo, promovendo um true bypass mais que perfeito, geralmente encontrado somente nos grandes e caros equipamentos hi-end. A grande sacada nessa seleção de sinais é utilizar lógica digital, como foi feito, ao invés de chaves de seleção no painel. Um display informativo sempre fica melhor nesses projetos.

Porta serial

Como o gabinete já possuía uma porta serial, decidi mantê-la para eventuais atualizações do SM1 Platinum - que certamente acontecerão. Fica mais fácil somente injetar o novo código pela porta serial do que recolher o equipamento, abrir, retirar o MC... Nos projetos futuros que necessitem dessas atualizações, certamente vou manter uma porta serial externa disponível também.

No mais, o sistema trabalha folgado, de forma muito precisa e elegante. Numa versão mais funcional do SM1 Platinum, poderia até utilizar um display VFD (que deixa tudo mais bonito) e entradas de sinal dedicadas para tape, phono, etc. com seus níveis definidos e prontos para conexão direta. Quem sabe até uns VU's... Mas isso fica para um próximo nível.


Tela inicial já conhecida por aqui

Tela de apresentação e versão

Já operando...

...e aguarda seleção

Selecionada fonte 01

Selecionada fonte 02

Visão aberta aguardando seleção (LED laranja = mute)

Porta serial para atualizações

Referência de dimensões

Entradas RCA (minhas favoritas)

7 dicas para projetos DIY, seja você iniciante ou veterano

Pois bem. Vou tentar me resumir em sete grandes dicas para projetos DIY, seja você um novato ou um veterano, para que seu tempo seja otimizado e para que o produto final tenha mais qualidade. E se você não leu a série de dois capítulos 'Planejamento e execução de projetos DIY', seria muito produtivo que o fizesse antes de continuar o artigo atual.


Dica #1 - Planejamento prévio

Não adianta juntar as peças na bancada e sair corroendo placa se você não planejou suas ações antes. Isso vai gerar desperdício de tempo e de material, caso você cometa algum erro ou se esqueça de algum detalhe que deveria estar ali mas não está. Abra um documento de texto e vá anotando os passos do seu projeto. Ou até, paralela ou exclusivamente, tenha um caderno e uma caneta sempre à mão para eventuais anotações e ideias. Meus projetos sempre saem do papel, geralmente, antes de qualquer teste prático em bancada. E sou resistente a simular circuitos no computador: prefiro fazer tudo fisicamente. Então, resumindo, planejamento é fundamental para evitar projetos furados, dispendiosos e que vão tomar muito tempo em retrabalho.

Dica #2 - Testes

Se você seguiu a dica #1, certamente vai seguir a dica #2: teste tudo de forma incansável, verifique aquecimentos, tensões incorretas, variações de corrente ou fugas em circuitos. Verifique a massa, certifique-se de que tudo está conforme antes de qualquer coisa. Se é um projeto de áudio ou que envolva RF, seja ainda mais cuidadoso. Uma ou duas trilhas mal traçadas na PCI podem se transformar em antenas que não deveriam existir, colocando seu projeto em risco e fazendo você perder um tempo precioso analisando um circuito que está montado corretamente, mas que ficou prejudicado pelo layout da placa. Outro erro clássico nos projetos é montar uma fonte mal dimensionada, pobre ou ruidosa. Antes de alimentar seu precioso circuito, monte a fonte com toda atenção, teste quantas vezes achar necessário e somente dê o circuito por finalizado quando realmente sentir confiança na sua montagem. Uma fonte fora de padrão certamente vai comprometer seu projeto, tomando mais tempo em bancada do que o necessário.

Dica #3 - Componentes

Nunca, mas nunca trate seus componentes sem o devido respeito. Se você é do tipo que lê datasheet, sabe muito bem dos cuidados que se deve ter para evitar a perda do CI ou do FET. Um descuido e você conecta um circuito com a polaridade invertida, ou se engana com a pinagem na hora da montagem, se esquece de cuidados básicos e coloca seu projeto em risco. Depois, perde mais tempo refazendo o projeto do que o testando, de fato. Selecione cuidadosamente os componentes, teste cada um deles antes de colocar no circuito, cuide os valores de tensão de trabalho dos capacitores, a corrente máxima dos diodos e não ultrapasse os limites de cada componente. De preferência, mantenha uma margem de segurança para componentes ativos, como os capacitores e os diodos da fonte de alimentação: se você tem uma fonte que fornece 18V em aberto (sem carga) mas que com carga (ou regulador) cai para 12V - que é a tensão necessária para alimentar seu projeto - tenha o bom senso de não utilizar um eletrolítico de 16V, como se vê por aí. Certamente vai acontecer o inevitável, mais cedo ou mais tarde: esse capacitor vai estufar e passar a não trabalhar corretamente. O resultado num circuito de áudio, por exemplo? Ruídos fortes e mau funcionamento, estalos e, na maior maré de azar, a queima das saídas. Tomando por exemplo meus projetos, no HS-1875Mi tenho uma fonte simétrica de +/- 20V x 5A com 17600MF de reserva em dois bancos de 8800MF cada. Sabe a tensão de trabalho dos capacitores? 35V. Sim, margem de segurança alta para evitar problemas futuros. Caso tenha curiosidade, tenha a oportunidade de desmontar um receiver ou amplificador de potência dos anos 80/90 e você entenderá o porquê de esses aparelhos ainda funcionarem até hoje, muitas vezes com componentes intactos e originais de fábrica. 

Dica #4 - Montagem

Particularmente, prefiro as montagens em caixas metálicas. Além da grande resistência mecânica, também fornece blindagem efetiva aos circuitos, afastando qualquer ruído irradiado ou parasitas do gênero. Claro que é mais complicado trabalhar com metais, principalmente na furação de painéis, mas vale o trabalho que dá. Quando for montar seu projeto, após todas as dicas anteriores, atente-se ao organismo interno que você está criando. Quanto mais organizado, melhor trabalhará seu organismo. Passe cabos de forma que a estética não esteja acima do bom senso de isolar a alimentação dos sinais, use cabos de qualidade, avalie corretamente os componentes ativos para não economizar no dissipador de calor e, sempre que necessário, utilize cabos blindados para sinal. Outra coisa muito importante é aterrar todo e qualquer ponto metálico 'solto' dentro do gabinete, como o corpo de potenciômetros, dissipadores de calor, suportes metálicos e tudo o que puder se revelar uma antena. Se o gabinete for metálico, esse problema se torna quase nulo, mas por questões de qualidade, o faça da mesma forma. No final de tudo, aterre o gabinete também, de uma forma que não haja loop de terra, casando tudo de forma bonita e técnica, sem aranhas e emaranhados de fios medonhos, por favor. Se o case for pequeno, avalie a necessidade de isolar cada circuito fisicamente.

Dica #5 - Isolando circuitos

Por ter montado muitos projetos em gabinetes compactos, acabei aprendendo essa na marra. Se você deixar um circuito sensível muito próximo do trafo ou de algum componente similar, certamente vai ganhar ruído irradiado. E isso vale para circuitos muito próximos, que podem influenciar negativamente no funcionamento coletivo, seja irradiando ou conduzindo de forma parasita alguma frequência. Por isso, sempre que necessário, isole fisicamente os circuitos utilizando a fantástica gaiola de Faraday - há muitas formas de criar uma, basta estudar sobre o assunto. Esses cuidados também se aplicam ao layout da placa de circuito impresso, para que trilhas críticas não se cruzem ou circuitos não estejam distantes o suficiente para evitar interferências. Um descuido, nesse caso, pode invalidar totalmente o funcionamento do projeto, principalmente se tratando de circuitos de RF ou com osciladores precisos.

Dica #6 - Revisão final

Antes de declarar finalizado um projeto, mesmo após seguir rigorosamente cada etapa de testes, faça o mais importante: teste tudo novamente! Siga o equipamento da entrada AC até cada setor. Se tudo está de acordo, cada cabo passado corretamente, tudo bem afixado, nenhum curto ou placa tocando onde não deve tocar, daí sim: ligue o equipamento e comece a testar as tensões da fonte, se tudo bate e está correto. Verifique se algum componente está aquecendo além do previsto no projeto e tome as providências. Um exemplo clássico é na montagem de fontes, de inversores ou de amplificadores de potência, quanto ao dissipador de calor escolhido. Quem tem experiência em montagem e desenvolvimento, seleciona dissipador no olho, sem pensar. Mas quem chegou dia desses, pode se confundir e aplicar menos área do que o necessário. Vejo muitos projetos com LM, TDA, IRF, TIP e pontes de diodos com menos área dissipativa do que o ideal, e com menos área ainda do que o desejável num projeto seguro. O resultado é sempre o mesmo: vida útil reduzida e um projeto fadado ao fracasso. E quando falo em fracasso, falo de equipamentos que deveriam funcionar milhares de horas sem qualquer problema, mas que terminam condenados por imperícia ou por economia de projeto. Ouço muito o termo 'mas estava no datasheet' na tentativa de justificar um projeto falho e o que eu tenho a dizer sobre isso é o seguinte: datasheet não ensina técnico, apenas parametriza suas aplicações. Se o datasheet diz que tal componente dissipa 40W, obviamente que isso é um parâmetro máximo e jamais um limite máximo para seu projeto. Seguindo cegamente o datasheet, sem possuir experiência ou senso crítico, você encurtará drasticamente a vida útil do componente, embora ele vá funcionar 'normalmente' dentro do seu circuito. Por isso, tenha bom senso.

Dica #7 - Projeto finalizado nunca está pronto!

Se todas as dicas anteriores foram úteis, dentre seus próprios métodos de produção e desenvolvimento, você finalizou um projeto. Mas sempre fica aquela vontade de ter feito alguma coisa diferente, uma função que você não pensou na época e que gostaria de aplicar agora. E nem sempre dá certo ou é possível. Isso porque projeto fechado é projeto fechado, mas você tem uma linha, agora. Dentro do mesmo projeto, crie variações, uma nova versão, ou até uma versão experimental. Você estará exercitando suas técnicas e descobrindo mais do universo DIY. Mas deixe o projeto atual intacto, a menos que você apenas queira atualizar um microcontrolador ou alterar algum parâmetro interno sem alterar painéis e funções principais. 

A ideia básica por trás do DIY é criar e por isso, crie! Encontre maneiras de desenvolver novas soluções a partir das grandes ideias que você já teve, como forma de aperfeiçoamento pessoal, profissional e executivo. Um projeto finalizado nunca está pronto, mas um projeto finalizado é um ponto de partida prontinho para novas soluções, novas ideias e grandes projetos. 

Conclusão

Imagine quanto tempo você vai levar para desenvolver uma fonte de alimentação bacana e segura. Agora, leve em conta que essa mesma fonte de alimentação poderia servir de base para inúmeros projetos, e que esse tempo que você dedicou no desenvolvimento dessa fonte será poupado, podendo ser aplicado aos demais setores do projeto. Isso é DIY, é desenvolver e produzir de forma ascendente, sem olhar para os erros passados como falhas, mas sim como degraus evolutivos para seus projetos.

Compartilhe com alguém!