Mostrando postagens com marcador bancada. Mostrar todas as postagens
Mostrando postagens com marcador bancada. Mostrar todas as postagens

ICEL LC-300 - Leitura de capacitores e bobinas com cara vintage

Ganhei esse capacímetro do meu sogro, o mesmo gênio da telefonia/eletrônica que me presenteou - depois de muita insistência minha - com o FD-31P, um frequencímetro de mesa muito preciso. 

Tá certo que a escala desse cara não passa dos 200MF/20H, mas obviamente que valores maiores que esse a gente nem costuma testar, já sai trocando mesmo. E faz também leitura de valores para bobinas, o que pode ser decisivo em algumas reparações. O único defeito dele era um fusível interno aberto e alguma variação na leitura, que corrigi precisamente via trimpot, existente no próprio circuito. O aparelho é completamente analógico, muitos CIs, chaves de seleção mecânicas e um display LCD. É alimentado por uma bateria de 9V, possui grande autonomia mas não possui desligamento automático. Obviamente, você deve desligar sempre após cada uso.

No mais, cumpre muito bem o que promete, me dando valores precisos dentro da faixa crítica dos capacitores. Leitura de bobinas, dificilmente irei utilizar, mas é muito confortável saber que tenho esse recurso disponível. É mais um caso de equipamento antigo que não vai para o lixo somente por ser antigo. E pela qualidade da fabricação, tão cedo não me deixará na mão.

Sem mais delongas, as fotos.


Já limpo e reparado



Medida de capacitor de 470nF

Medida de capacitor de 2,2MF (calibração)


As chaves de seleção de função já limpas

Medida de capacitor 470nF (tolerância 5%)

Medida de bobina 550mH (calibrando)

Bloco lógico removido para manutenção

Grande CI de controle e amostragem (LCD desafixado)

Suporte metálico do display (resistente!)

Sabe-se lá quantos anos tem esse carinha aí, e veja quanta qualidade! Uma grande saudação aos grandes e geniais engenheiros e técnicos das antigas, que sabiam o que estavam fazendo.

Projeto Labrador - PKL2v1 - Monitor visual de ajuste de linha

Ter controle total do sinal de entrada e do sinal de saída de um sistema hi-fi e ainda possuir meios de monitorar a largura desses sinais é primordial para audiófilos e produtores musicais e é com essa premissa que sai da bancada o PKL2v1, um aliado no controle fino e no ajuste da injeção de sinal 

Desde o lançamento do HS-1875Mi, meu amplificador monitor de referência hi-fi, fiquei mais querendo do que precisando produzir um projeto que já existe faz tempo mas que nunca tinha saído nem do papel e menos ainda para testes. E então, mês passado, decidi que já era hora de voltar a produzir meus equipamentos para o home studio, que já conta com uma Behringer Q502USB em substituição ao Mini Hi-End Mixer, que teve seu espaço garantido até que uma interface USB se fez necessária. E como essa necessidade/desejo estava me torturando há meses, lá fui revisar o esquema do PKL2v1 e levar para bancada para ouvir o timbre do bicho. E o trem soa bem que dá gosto.

A ideia básica era controlar o sinal de entrada - vindo de qualquer equipamento - em seu ganho inicial, monitorar esse sinal de entrada para evitar clip; esse sinal, monitorado, afinado manualmente e protegido contra cliques e outros demônios que afligem quem gosta de qualidade, seria aplicado num pré-amplificador/bypass totalmente transparente/flat e seria enviado para um segundo bloco de controle, que contaria com um segundo monitor para evitar um clip secundário - que poderia ser enviado para o fim do processo por algum ajuste de ganho maior na entrada, que ultrapassaria a capacidade de banda do ajuste do pré-amplificador transparente - e que também permitiria o mesmo ajuste manual e proteções do primeiro bloco. Basicamente, um ajuste fino de passagem de sinal entre a fonte e a audição. Ou um super controle fino do que 'chega' e do que 'sai' de forma que o sinal permaneça contínuo e perfeitamente transparente entre a entrada e a saída, sem alterações ou efeitos. Como meu fiel escudeiro atual é o HS-1875Mi, resolvi o esquema do projeto me baseando nas configurações do carinha para casar perfeitamente o set. E lembrando que meu set já conta com o ViAS e com o H2PV1, grandes recursos desenvolvidos por aqui. Até pouco tempo, meu set também contava com as proteções avançadas do SLF2PRO, que, por alguma razão, teve seus varistores fritos ao proteger o conjunto há alguns meses - esqueci de atualizar a postagem do projeto - e eu ainda não peguei para reparar...

Funcionamento do conjunto

Sinal de entrada >> Ajuste manual de ganho fase 1 + peak level >> pré-amplificador transparente/bypass >> Ajuste manual de ganho fase 2 + peak level >> sinal de saída. Este é o caminho do sinal desde a entrada, passando pelos ajustes manuais e automáticos até ser entregue ao final do estágio. Esse processo permite que o sinal original não sofra deformações ou sature a entrada dos demais elementos do conjunto de saída de sinal. Além de ser um grande aliado dos outros equipamentos do set, também protege ouvidos.

Uso e finalidade

Em gravações e mixagens, principalmente, o fator ganho é questão primária para um resultado final decente e agradável. Mas, em diversos equipamentos, não possuímos ajustes finos ou alertas que nos indiquem distorção/clip/overload. É nessas horas que sempre levo em consideração painéis completos e funcionais, por mais que me custe tempo de bancada e alguns dinheiros a mais; quando a gente precisa de um visual de fácil identificação é que a gente começa a considerar as escolhas...

Neste projeto tão especial e simples, consigo ajustar o sinal de entrada de forma individual com LEDs monitores de clip, e também posso compensar o PAN, se for preciso. Com o sinal já 'dentro' do PKL2v1, é aplicado o pré-amplificador transparente para compensar quaisquer perdas. Passado o pré, o sinal chega finalmente aos controles de saída, que possuem também os mesmos LEDs monitores de clip da entrada, mas aplicáveis ao sinal gerado pelo pré-amplificador transparente já atuado pelo potenciômetro. Complicou? Imagine que esse sinal possui três compensações, duas manuais e uma automática, de forma que o sinal de entrada é devidamente ajustado para que você ouça dentro de um nível adequado, sem distorções e com uma constante monitoria em duas fases: entrada e saída. O que 'sai' do PKL2v1 é um sinal constante, ajustável e controlado.

Mais uma vez foi adotado o gabinete de DVD-ROM, que possui um excelente espaço útil e perfil baixo, permitindo que todos os projetos sejam modulares e que possam formar um conjunto visualmente interessante. E também tem o fator blindagem, por ser completamente metálico e também muito bem construído.

Ah. E aquela ideiazinha de pintar os gabinetes do Projeto Labrador (esses montados em gabinete de DVD-ROM são todos catalogados assim) segue mais forte do que nunca. É muito provável que eu o faça dentro de algumas semanas...

Como não poderia deixar de existir, as fotos do projeto.


Painel frontal (azuis: saída / vermelhos: entrada) e os LEDs da
esquerda para direita: output peak level, power e input peak level

Outra coisa que pretendo adotar em breve são painéis impressos com as informações de uso. Até hoje, poucos foram os projetos que ganharam um painel informativo, sendo a maioria como o PKL2v1, sem qualquer informação para quem o vê. Por isso, sempre segui uma lógica visual ao montar os painéis, como nesse caso, da esquerda para a direita:


LED1 = Output Peak Level L | LED2 = Output Peak Level R | LEVEL A1 = Output L | LEVEL B1 = Output R 

Power LED 

LEVEL A2 = Input L | LEVEL B2 = Input R | LED1 = Input Peak Level L | LED2 = Input Peak Level R


Conector de força (220V) e os P10 IN/OUT

Os clássicos pezinhos comerciais da linha Labrador

De baixo para cima: HS-1875Mi, PKL2v1, ViAS e Home2Pro

Home studio (destaque: Behringer Q502USB)

Super LED verde do PKL2v1

Visão geral do PKL2v1

Fico devendo aquele vídeo demonstrativo de sempre. Até a próxima!

Log do projeto

27/11/2016 - Esquema elétrico definido, iniciando montagem do painel
10/12/2016 - Montagem e teste da fonte, acionamento dos LEDs frontais e dos circuitos monitores de sinal; fixação dos conectores traseiros e fiação blindada adicionada
11/12/2016 - Montagem do pré/bypass, ajustes de ganho e primeiros testes de audição; circuito afinado e compensado, filtros e linha configurados; equipamento segue para montagem em gabinete para testes finais
12/12/2016 - Montagem em gabinete, testes de audição e finalização de projeto; publicação em breve!


** 16/12/2016

E como promessa é dívida, aqui vai o vídeo demonstrativo bem na hora dos testes de aferição dos blocos.


Controlador PWM para cooler com sensor dedicado para GPU

Fácil montagem, excelente resultado e uma configuração prática e robusta para garantir silêncio durante o uso comum e alto rendimento quando necessário, a manutenção da temperatura do sistema se mantém estável e segura com o controlador PWM estendido

Pois bem. Há alguns meses, me despedi do meu Samsung RV415-CD3BR e iniciei a montagem do meu desktop. E na semana passada, durante uma session de CODMW 3, a máquina simplesmente se desligou, ficando com o LED POWER piscando. Na hora pensei na fonte, no nobreak, placa mãe... ao abrir o gabinete para verificar, notei uma temperatura muito alta, mas, aparentemente, dentro do normal para uma máquina de alto rendimento. Fechei tudo e voltei a session. Vinte minutos depois, blackout de novo... Só poderia ser calor, oras. Esse gabinete veio com um cooler frontal de 120mm x 120mm que mantive desligado até então por questões de ruído. Odeio ruído de cooler. Liguei esse cooler e também um outro que fica na parte de trás - veio num box Cooler Master Blizzard T2 originalmente, mas que eu substituí por um cooler fantástico retirado de um HP com controle PWM, para que haja menos ruído ainda. Essa troca será melhor explicada em uma nova postagem! Com os dois coolers ligados - e um ruído bastante alto - a máquina se manteve estável. Pronto, resolvido. Mas não! O ruído incomoda muito depois que se encerra a brincadeira. Porque o computador é como um amplificador classe AB: se você não exige dele, ele não vai aquecer muita coisa. E é por isso que eu odeio cooler. E sim, o que causou o desligamento da máquina foi a placa de vídeo sobreaquecida.

Pensei em várias alternativas comerciais para controle dos coolers, mas todas elas incluem aqueles painéis toscos e chamativos que tornariam meu gabinete sóbrio num carro alegórico. E se fosse para manter os coolers ligados a 100% permanentemente, seria fácil. E convenhamos, isso aqui é o diyPowered! Vamos montar um controlador PWM? Vamos.

A ideia básica já estava pronta: uma plaquinha PWM que retirei de uma fonte ATX que ficou guardada por anos. Só precisei trocar o transistor de potência original para que não houvesse problemas com a carga maior que eu colocaria na saída dele e pronto. Montei tudo numa caixa plástica de fonte chaveada, usei 3 terminais para conectar os coolers - dois terminais de 4 pinos e um de 3 pinos - e um LED vermelho discreto externo para indicar que há tensão no circuito. Também precisei alongar o cabo do sensor de temperatura para que pudesse chegar até a placa de vídeo. Montado o sensor delicadamente sobre o dissipador da placa de vídeo, fiz os testes num dia bastante quente e a temperatura máxima foi de 50ºC, o que pode ser considerado bom para um dia quente. A máquina se estabilizou dessa forma e após fechar a session, os coolers desaceleraram gradativamente até a temperatura cair. Perfeito!

Com o desempenho alto, todos os coolers aumentam o giro a 100%, mantendo o sistema muito bem ventilado. Do contrário, quando da utilização 'normal' da máquina, mal ouço os coolers. Tem foto? Tem sim!


Isso será organizado, foi montado assim mesmo na hora do teste

Cooler frontal original do gabinete (Cooler Master)

Teste de carga máxima (bem abaixo do limite)

Sensor afixado no dissipador da GPU

Vista do conector de força

A caixa plástica utilizada e o LED indicador de energia

Dissipador CPU e logo atrás, o cooler auxiliar (Cooler Master)

Retirada do transistor de potência original

Instalação do novo transistor de potência (TIP32)

Conectores para os coolers

Instalação do dissipador de calor (vista 1)

Instalação do dissipador de calor (vista 2)




** 02/11/2016

Verifiquei que o ponto de maior aquecimento da placa de vídeo é onde se encontra os reguladores e resistores. Reposicionei o sensor entre dois resistores de precisão e o funcionamento dos coolers ficou mais preciso. O dissipador não aquece tanto quanto eu pensava, em comparação com os reguladores/resistores. Depois dessa intervenção, após 3~5 minutos de Far Cry 3, os coolers estão girando a 100% e isso me faz muito feliz! É perceptível o calor que o cooler traseiro consegue colocar para fora do gabinete durante essa aceleração, o que torna o sistema eficiente e autônomo.

MON1USB - Monitor de temperatura

Reaproveitando um sensor de precisão de um termo-higrômetro, um LED laranja de alto brilho, uma carcaça plástica de fonte e um LCD com PCI retirado de um gabinete velho e quase morto, nasce um monitor de temperatura altamente funcional para testes gerais

Desenvolvido a partir da necessidade de testar o condicionamento do SSv2 - publicado aqui há algumas horas - este simples monitor de temperatura vem sendo guardado há anos esperando por uma boa aplicação. E a hora dele chegou.

Retirado de um gabinete enorme que foi descartado, veio com cabos arrebentados e com um sensor muito simplório. Logo em seguida, foi tirado o LED do backlight sei lá para qual utilidade e o conjunto ficou guardado. Um dia resolvi testar esse monitor e ele não lia a temperatura ambiente, mostrando apenas dois traços. Ou o sensor realmente estava danificado ou o microcontrolador perdeu seu clock. Ou qualquer coisa entre o sensor e o microcontrolador. Acabei deixando o conjunto de lado novamente.

Algum tempo depois, ganhei um termo-higrômetro sumariamente condenado por não apresentar mais a umidade. Como não sou de fazer desfeita, aceitei muito bem a oferta. Os termo-higrômetros possuem uma precisão mestre e como de costume, tentei ajeitar o cara. O defeito estava feio de cara - microcontrolador parado - e obviamente não insisti. Retirei o sensor com cabo e tudo e deixei guardado. Mais algum tempo depois, me lembrei do conjunto LCD e também do sensor que removi do termo-higrômetro. Achei que tinha resolvido o caso. E resolvi! Meu conjunto dependia apenas do sensor para restabelecer o programa e tudo funcionou perfeitamente. 

Logo após fazer a coisa funcionar, peguei o termo-higrômetro oficial da casa para comparar com meu conjunto. E voilà: a diferença aferida com um equipamento farmacêutico era de 0,3ºC! Isso significa que os chineses estão de parabéns com seus loucos acessórios ou que a troca do sensor original do meu conjunto por um sensor 'de verdade' foi crucial. Feliz da vida, deixei tudo montado e guardado.

Hoje, data da postagem e também data do lançamento do SSv2, peguei o conjunto da caixa de componentes especiais, desmontei e escolhi a dedo a cor que preencheria o backlight. Tinha azul, vermelho, verde e um laranja muito bonito. Optei pelo laranja, embora quisesse mesmo um branco. Remontei o conjunto e não achei justo que ficasse daquele jeito, parecendo coisa porca. Todo esse esforço tem uma explicação: monitorar a temperatura do SSv2 em dois momentos. Num primeiro instante, testar a condição do sistema com o túnel de cooler sob um teste de stress. Noutro momento, testar a mesma condição do sistema sem os coolers ativos. Dessa forma é possível determinar o limite de dissipação do sistema em condições extremas. A utilização normal do SSv2 não chegará nem perto dos limites testados pelo software utilizado na ocasião, mas uma vez estabelecidos os limites máximos de aquecimento do sistema em condições extremas, será fácil definir a necessidade dos coolers ou não.

De uma simples e prática configuração, alimentado por 5V diretamente de uma porta USB de qualquer padrão, o MON1USB foi desenvolvido em poucas horas - e depois de algum muito tempo de bancada esporádica - para um teste específico, mas se torna naturalmente uma ferramenta indispensável para testes e aferições em bancada.


Monitorando SSv2

Detalhe dos cabos do sensor (branco) e +5V (USB, preto)

Detalhe da chave POWER


Ligado e monitorando o SSv2
 
Painel frontal

Painel traseiro

Após os testes, postarei o conjunto completo com o cabo (enorme) do sensor e o próprio sensor. E claro que teremos estatísticas sobre o aquecimento do SSv2 tão logo. O primeiro teste - com túnel de coolers - já foi concluído e os resultados estão devidamente registrados. Amanhã serão executados os mesmos testes com os mesmos períodos, porém, sem o túnel de cooler. De posse dos resultados dos testes, postarei os valores e aplicarei as medidas óbvias, dependendo das médias reais.

Reparo, manutenção e recondicionamento de fontes (X)TX (ATX, SFX, ITX, etc.)

De forma avassaladora, fontes chaveadas são cada vez mais utilizadas para todo e qualquer tipo de aplicação, tanto pelo seu custo baixo de produção e montagem quanto pelo poder de corrente e tensão possíveis num espaço físico muito reduzido. Mas qual a real vantagem nisso?

Faz pouco mais de doze carnavais que trabalho com TI e de lá para cá tanta coisa mudou que nem sei por onde começar a contar sobre minha experiência com a área. Paralelamente ao meu caso singular com a informática, muito antes de ser iniciado, já 'mexia' com eletrônica. Perfeito casamento entre teoria, prática, produção e comportamento dos dois ambientes intimamente conectados

Desde cedo ficava pasmo com o descarte desenfreado das tecnologias ditas obsoletas - e olha que obsoleto em informática pode ser um processador com dois anos de vida que possui poder mais que suficiente para 90% dos usuários, mas que são sumariamente descartados porque um site especializado disse que o lançamento da poderosa possui menos consumo e poder de processamento até 10x maior. Oras, convenhamos, pessoal: o usuário comum que ouve música ruim enquanto preenche planilhas em seu Excel pirata do seu pacote Office pirata que foi instalado pelo carinha da esquina com o Windows pirata vai mesmo sentir diferença nessas 10x mais velocidade? O usuário não consome 50% do poder de um Core 2 Duo e ainda se acha no direito de exigir um Core i5?! Ironias e presepadas à parte, vamos ao que interessa. 

O que move toda essa presepada coisa de tecnologia e que ninguém dá a mínima? Energia. E energia elétrica. Já vi tanto idiota usuário gastando mais de R$ 2.000 em kit gamer do tipo processador/memória/placa mãe/placa de vídeo + gabinete bonitinho e se esquecer de comprar uma fonte de alimentação decente. Sim, meus caros. O fulaninho se esqueceu de que nada vai adiantar uma mega configuração se o fornecimento de energia não estiver à altura. Porque o que interesse pro mané é o LED dentro do case, o water cooler - que ele nem sabe pronunciar, a placa NVIDIA picas que o amigo playboy pagou três casas decimais... Daí o mesmo mané começa a jogar e não entende o porquê de o jogo dar lag, de o Windows travar com mensagem de erro de driver de vídeo que parou de forma inesperada... E culpa - de forma justa, até - o técnico de confiança que vendeu tudo certo e se esqueceu da fonte correta para sustentar o gamer mané. Mas, tirando as presepadas de lado, vou registrar hoje - pela primeira vez em anos - uma simples reparação e recondicionamento de duas fontes padrão ATX formato SFX, muito comum em gabinetes ITX domésticos e de automação comercial. 

Essas fontes costumam ser superiores àquelas ATX péssimas que custam R$ 60 pro consumidor e R$ 20 de custo pra revenda. E também costumam possuir um projeto bastante inteligente dentro daquelas caixinhas pequenas e simpáticas. Eu, chato que sou, bato palmas para os projetistas dessas pequenas notáveis, já que pensaram em quase tudo o que deveriam ter pensado no projeto, o que torna as produções quase perfeitas. Das fontes mais comuns que já vi com um bom projeto estão ELGIN, K-MEX, Dr. Hank, LiteOn e algumas M-TEK. Com isso quero dizer que fonte boa para mim não precisa ser pretinha, bonitinha, com LED no cooler e logo de marquinha cara. O que vale para mim é projeto.

Quando vale a pena reparar ou recondicionar?

Fonte 1
Vale a pena quando, de cara, já se tem ideia do problema. Um fusível que abriu, uma ponte de diodos ou diodos individuais da retificadora em curto, capacitores estufados, cooler problemático, ressoldagem, troca do NTC; basicamente. Tiro pela minha própria prática e experiência: só vale a pena quando for roubar menos de duas horas de bancada. Aí vale a pena. Porque uma boa fonte desse padrão custa entre R$ 140 e R$ 250 e para dar sobrevida a uma dessas com alguma pouca atenção na bancada, claro que vale muito a pena. 

Fonte 2
 As fontes que reparei e recondicionei há poucas horas e que ilustram a temática da postagem traziam sintomas muito particulares desse formato. Uma delas - a mais novinha - estava com as tensões +12V e +5V se alterando, sem estabilização. Quando ligada, em poucos minutos as tensões subiam até 13.2V e 5.8V, o que fazia com que fonte se desarmasse todo o tempo. A outra - a mais detonada - estava com pontos de solda danificados por algum curioso que tentou desmontar para limpar e fez besteira. Não ligava e estava na chuva há semanas. Não possuo detalhes sobre a fonte mais nova, mas aparenta ser dos modelos que equipam os ITX mais caros. A detonada é uma K-MEX PN200 de 125W que, por ironia, mostra as tensões fechadas (12.0V e 5.0V) ao contrário da outra, que está bem nova e possui 0.2V a mais em cada saída. Não que seja problema, pelo contrário. É só meu TOC tecnológico falando alto.

Para resumir

Quando as tensões se encontram instáveis ou a fonte liga e logo se desarma, procure logo por um eletrolítico na faixa dos 22MF aos 100MF próximo ao CI de referência, e em alguns casos, próximo aos trafos. Ele é o campeão de dar problema em todas as fontes ATX. Esse cara se sacrifica muitas vezes e salva a fonte, em muitos casos. Troque ele e testes as tensões, mas só de a fonte acionar, já é muito bom sinal. Geralmente basta trocar esse cara e inspecionar todos os demais componentes e contatos para correr pro abraço. Se encontrar mais algum capacitor estufado ou com vazamento, troque sem pensar.

Quando se tratar de fusível aberto, você pode avaliar o que pode ter acontecido pelo estado do fusível. Se ele apenas abriu e se encontra intacto, provavelmente foi alguma sobretensão ou sobrecorrente. Em todo caso, macaco velho troca o fusível e tenta ligar a fonte utilizando a famosa lâmpada em série - pesquise no Google sobre a lâmpada em série e seja feliz na bancada. Mas se o fusível estiver carbonizado, quebrado ou dessoldado, a coisa muda. Teste diodos, capacitores e os transistores. Em muitos casos, um ou mais diodos da ponte - ou a própria ponte - está em curto. E em outros casos, os transistores - ou CI - da osciladora estão em curto. Teste tudo antes de ligar a fonte e quando for ligar, lâmpada em série. Esse roteiro serve como referência ao analisar qualquer tipo de fonte chaveada.

Capacitores estufados ou com vazamento são sinal de aquecimento por cooler travado/lento, interior - do capacitor - seco ou ineficiente dissipação do calor interno - da fonte. Isso significa que o calor tomou conta e ninguém se deu conta de mandar a máquina para manutenção preventiva. Troque todo e qualquer capacitor estufado ou com vazamento, sem exceção. As fontes costumam não 'arrancar' ou se desarmar com frequência enquanto a máquina é utilizada - o que leva 99% dos usuários a pedir ajuda aos técnicos formatadeiros da região. Porque criaram a lei universal para resolver qualquer tipo de problema: a formatação. Pior que isso, ainda deram o nome errado para a coisa: porque formatar é dar formato; reinstalar Sistema Operacional é outra coisa. Mas isso é tema para outro dia. 

Trocados todos os capacitores danificados, teste a fonte. Deve funcionar redondinha de novo. Verifique as tensões, ok? E quanto ao cooler, se estiver girando meio forçado mesmo depois de limpo e lubrificado, troque. Obviamente que as fontes mais bem produzidas possuem coolers um pouco melhores do que os que vemos por aí, mas nada é eterno e você deve ficar atento a isso. Aquecimento é inimigo. A troca do NTC é rara mas pode ocorrer. Verifique basicamente o aspecto físico dele. Certamente você saberá quando ele deve ser substituído. E quanto às ressoldas, muitos casos se resolvem apenas com essa simples ação. Um transistor com solda deficiente pode passar desapercebido pelo técnico e condenar uma fonte cara.

Obviamente que a postagem não se aplica àquelas fontes poderosas, com seus 400W, 500W e até com mais de 1000W. Porque essas sempre vão valer a pena o reparo mesmo que demore pouco mais de duas horas de bancada e meia dúzia de componentes. E também não se aplica à área de TI, porque não existe esse tipo de trabalho em ambiente corporativo e uma fonte danificada é simplesmente substituída por uma nova fonte para que os trabalhos sejam restabelecidos.

Portanto, para finalizar o assunto mesmo sem agradar a gregos e troianos, fonte barata é dor de cabeça que nunca vai valer a pena utilizar, e menos ainda o seu futuro e certo reparo; fonte que se preste custa mais de R$ 150 e não adianta investir no motor se vai usar gasolina adulterada; reparo e recondicionamento permitem restabelecer o funcionamento da fonte por completo, como nova, e não alteram quaisquer das características funcionais desde que a execução seja limpa; por último e não por isso menos importante: se você não tem experiência com fontes chaveadas ou não possui conhecimentos avançados em eletrônica, não se aventure: o erro pode custar muito mais do que transistores e capacitores explodindo na sua cara.

Boas reparações e menos lixo.


Fonte 1 - a mais detonada, com troca do seletor AC, chave
e tomada AC porque estavam oxidados pela chuva

Fonte 1 - cooler limpo e lubrificado funcionando 100%

Fonte 1 - no estado em que foi para bancada

Fonte 1 - após limpeza e retrabalho

Fonte 2 - cooler limpo e lubrificado

Fonte 2 - após limpeza e reparo

Fonte 2 - detalhe do eletrolítico 47MF próximo aos trafos

Fonte 2 - após limpeza e reparo

E sim, utilizo toalhas de mesa doadas para forrar minha mesa/bancada e proteger contra arranhões, soldas, etc. Tenho duas, uma para cada situação.


Planejamento e execução de projetos DIY

Pensei que seria interessante contar meus critérios para desenvolvimento de um projeto DIY para aqueles que não conhecem o processo ou que pretendam iniciar no DIY. Talvez fique somente nessa postagem, talvez eu faça mais de um capítulo sobre o tema. A ideia é que essas informações cheguem àqueles iniciantes que não sabem por onde começar e também aos mais experientes, para que possam aprimorar seus processos. 

O projeto no papel é fundamental

Fonte: Internet
Não adianta levar tudo pra bancada e montar. Isso até pode funcionar quando você está com aquela ideia na cabeça e precisa testá-la rapidamente. Mas um projeto requer roteiros bem definidos a serem seguidos para que as variáveis de erro sejam minimizadas ao máximo. Comece pelo básico do básico e coloque no papel tudo aquilo o que você pretende implantar no seu projeto. Se você vai montar um amplificador de potência, anote todas as funcionalidades e itens que você deseja adicionar - peak level, proteção DC, delay output, conexões, etc. - e não se esqueça de nenhum acessório ou componente. Isso evita retrabalhos dolorosos mais tarde, como quando você não prevê o aquecimento da ponte de diodos e tem que abrir espaço para que ela seja afixada num dissipador, por exemplo. É crítico demais para ser corrigido mais tarde, depois de montar a placa e já estar quase finalizando o projeto. Você vai perder tempo repensando o projeto, você vai gastar dinheiro (e mais tempo) se tiver que refazer a placa. E pior ainda se precisar alterar o layout do gabinete. Por isso você deve colocar no papel todos os passos para seguir na bancada. Melhor 'perder tempo' colocando todo o projeto no papel do que depois amargar um projeto mal sucedido. 

Teste todas as etapas

Fonte: Internet
Cada etapa finalizada requer testes. Se você criou o esquema elétrico, por mais perfeito que pareça, mesmo tendo sido simulado no computador com sucesso, ele precisa ser montado fisicamente. Somente assim você saberá onde está aquecendo, se precisa alterar resistores, onde está ocorrendo corrente demais e se os componentes escolhidos estão de acordo com a sua aplicação. 

Ainda tomando um amplificador de potência como exemplo, cada transistor escolhido poderá lhe dar um timbre diferenciado, ou até mais ou menos potência final. Os capacitores eletrolíticos são vaidosos e se você não souber como aplicá-los, seu projeto já vai começar mal. Por isso teste seu esquema em bancada, afine o circuito e seja caprichoso com seu trabalho. 

Selecione os componentes e calcule sua margem de erro

Fonte: Internet
Este é um ponto crítico. Muita gente compra componentes em qualquer loja, de qualquer jeito, sem qualquer procedência. E fica pior ainda quando se trata de integrados e transistores de alto desempenho. Se você aplica uma tensão de 65Vcc - tensão comumente encontrada em amplificadores de potência e fontes simétricas avançadas - num transistor falsificado por algum tempo - equipamento em uso - ele não terá a mesma durabilidade e qualidade sonora de um original. E você também encontrará sérios problemas com aquecimento. Isso sem falar que os falsificados possuem um péssimo acabamento e uma resistência física pobre. Tenha cuidado ao comprar seus componentes e não acredite em valores baixos demais.

Calcular a sua margem de erro durante testes evita que você precise sair de casa novamente para comprar novos componentes - gastando um tempo precioso que deveria ser aplicado ao projeto. E se lembre de que todos os componentes que você utilizou durante os testes não serão utilizados no seu projeto. Isso mesmo. Protótipo é protótipo e, por mil razões diferentes, você utilizará componentes novos quando for montar seu projeto original. Por isso compre mais componentes para testes do que você compraria para o projeto final.

Seja cuidadoso com o layout da placa

Fonte: Arquivo DIY
Muitos erros acontecem porque a placa foi mal desenhada. Interferências, clock, ruídos e até um circuito que se recusa a funcionar. Por isso evite cruzar trilhas de energia com trilhas de sinal, mantenha o transformador de força afastado dos circuitos sensíveis, utilize seções vazias da placa para formar cercas GND e crie barreiras físicas, se for o caso. Calcule cada espaço antes de desenhar seu layout para evitar retrabalhos e gastos excessivos com o projeto. 

Se você for utilizar a montagem ponto a ponto - técnica de soldar os componentes entre si sem a utilização de uma placa - os cuidados deverão ser redobrados para evitar o contato de componentes que possam danificar o circuito. Montagens ponto a ponto - P2P - são práticas e eficazes mas requerem muita organização e cuidado por parte do montador. E não é a melhor forma de se montar um projeto mais complexo, não tenha dúvidas.

Crie um design limpo

Fonte: Internet
Quando for pensar no painel do seu gabinete, faça algo limpo e simples. LEDs em excesso com cores berrantes e alto brilho não são legais, coolers não são necessários para tudo e menos ainda bonitos. E por falar em coolers, prefira não utilizá-los por conta do seu ruído, da sujeira que ele acumula e pela manutenção futura que você será obrigado a fazer. Cooler não é legal, não é bonito e somente se utiliza em projetos onde realmente existe a necessidade da troca de calor auxiliar. Pequenos amplificadores de potência, fontes de média potência e coisas do tipo não necessitam de cooler. E se mesmo assim você julgar necessário - ou apenas quiser, seja lá por qual razão - utilizar um cooler, seja sensato ao escolher um modelo discreto, com fluxo de ar compatível com a aplicação e sem LEDs. E queira instalá-lo em uma região onde não será visto. E quanto aos LEDs do painel frontal, também tenha bom senso ao selecionar o tamanho, o formato e as cores. Menos é mais.

E por fim, dedique tempo ao seu projeto

Se você não dedicar tempo ao seu projeto, certamente uma de duas coisas acontecerão: a primeira - e mais comum - é que seu projeto não vai sair da bancada; a segunda, o projeto não funcionará como você esperava. Tempo é a ferramenta que você mais precisa. Estude seu projeto, se comprometa a iniciá-lo e a terminá-lo definindo seus prazos, conheça novas maneiras de fazer uma mesma coisa e faça tudo conforme você achar melhor, seguindo o bom senso de pesquisar e ser cuidadoso com as etapas. Somente assim os resultados serão positivos. Erros poderão ocorrer, claro. Por isso devemos trabalhar com margens de erro devidamente calculadas, componentes de qualidade e ferramentas adequadas para cada operação. 


Compartilhe com alguém!