Mostrando postagens classificadas por data para a consulta fonte de bancada. Ordenar por relevância Mostrar todas as postagens
Mostrando postagens classificadas por data para a consulta fonte de bancada. Ordenar por relevância Mostrar todas as postagens

Troca do gabinete do meu trafo de ferramentas e bancada

Faz muito tempo que tenho esse trafo, praticamente 8 anos. Como já disse aqui antes, minhas ferramentas elétricas vieram do sudeste onde as instalações elétricas residenciais monofásicas são 127V. Aqui no Sul, é 220V. Logo, tinha um problema. Mas essa história eu já contei e se você quiser saber, corre lá na postagem da época!

Aquele gabinete plástico da Enermax não durou muito tempo porque o Cícero (meu finado Labrador) estava correndo pela casa e se enroscou na extensão que estava ligada no trafo, jogando ele de uma mesa diretamente no chão. Nem preciso dizer que se despedaçou por completo né. Como tinha um gabinete plástico de um no-break APC, acabei usando na época. Esse gabinete APC é muito elegante, tem bastante ventilação mas também é bastante frágil para suportar esse trafo dentro, e alguns meses depois, trincas apareceram em toda a lateral... Por sorte, consegui um gabinete metálico bem grande de um estabilizador de tensão antigo que estava com o trafo queimado - e por mais sorte ainda tirei fotos dele antes de descartá-lo no Eco Ponto aqui da cidade, adoro registros - que me serviu até ontem. Esse gabinete já estava bastante enferrujado em algumas partes e ainda tinha um conjunto de tomadas padrão antigo com bastante mal contato, o que era um problema quase sempre. Daí, na última semana me apareceu esse estabilizador podre de sujo que nem pensei duas vezes antes de pegar. Vejo muito potencial nas coisas que são jogadas fora e quando pego é porque vai sair algo bom. 

Limpando o gabinete e removendo o amarelado dos plásticos

Falando em gabinetes antigos, geralmente são brancos. E como você deve saber, partes plásticas brancas tendem ao amarelamento com o passar dos anos. Dica pra você: desmonte todo o gabinete, deixe de molho num balde sob imersão numa solução de água, sabão em pó e água sanitária por 24 horas. Grande parte da sujeira vai se soldar, bastando para isso esfregar. O amarelado das partes plásticas não vai sair mesmo, mas aqui vai o grand finale: pegue água oxigenada volume 40, passe em toda a superfície das partes plásticas amareladas sem piedade, deixe uma bangunça mesmo. Embrulhe essa peça em plástico filme ou algum saco plástico transparente e deixe exposto ao sol por pelo menos 3 horas. A grande maioria dos casos, é resolvida na primeira aplicação, mas se ainda estiver amarelado, repita o processo lavando a peça por completo, secando bem antes da nova aplicação. Pena eu não ter tirado fotos desse gabinete antes do processo, porque ficou muito bom.

Tempo recorde ou necessidade?!

Em menos de 48 horas transplantei o trafo bisonho pro gabinete novo e como sou chato e adoro uma complicação, meti várias melhorias nele: tem filtro básico na entrada 220V e filtro aprimorado na linha dos 120V. Tem fusíveis dedicados para as duas linhas de trabalho, LED indicador de energizado e LED indicador de saída energizada. E para deixar com fino trato, um voltímetro digital LED em vermelho na frente. Debochado, esse trem. Não é um trafo isolador, mas é um trafo que ainda vai me atender bastante. E não uso ele somente pra furadeira e serra tico-tico, antes que me pergunte: uso esse cara em bancada para reparo e teste de equipamentos que não possuem bivolt. São 1000VA prometidos pela Enermax que provavelmente são entregues porque já fiz esse trafo trabalhar forte e não cai tensão nem abre o bico.

Como usar voltímetro DC para medir AC?

Para fins de informação nerd, esse voltímetro é herdado da minha fonte antiga, a F5812ADJ, atualmente aposentada e doadora de órgãos. E como eu fiz pra que um voltímetro DC medisse AC?! Simples, jovem. Esse trafo - e todos os trafos que já reaproveitei de no-break e estabilizador - possui um ou mais enrolamentos que podem ser utilizados para diversos fins, apenas se deve ter cuidado porque alguns deles não são isolados da rede elétrica. Este trafo, em específico, possui um enrolamento de 10V que retificado, passa para 14V em aberto. Como ele foi feito para acionar relés e um LED indicador de ligado naquelas placas infames dos estabilizadores, tem corrente mais que suficiente para outras coisas. Na sua versão anterior, naquele gabinete antigo e metálico, ele alimentava um cooler e um LED. Sim, esse trafo aquece bastante e como o utilizava de forma recorrente, achei por bem fazer isso. Agora, com uso mais restrito, optei por não mais utilizar o cooler e adicionei algumas funções bacanas ao carinha. Então, sem mais delongas, como esse enrolamento faz parte de todo o conjunto, é óbvio que ele sofre interferência direta de qualquer queda ou incremento de tensão. Se eu já tenho um enrolamento pronto para uso, por que eu colocaria um trafo dedicado para esta finalidade?! Claro que descontadas as correntes de trabalho dos LEDs, relé e o próprio voltímetro, calibrei por meio de trimpot a tensão a ser monitorada e pronto. Variações são mostradas com perfeição pelo voltímetro, sem maiores dores ou circuitos mirabolantes e desnecessários. 

Essa modalidade de medir tensão AC é uma das mesmas que podem ser utilizadas para a esta função quando utilizamos ATMEGA ou outros microcontroladores. Não esqueça de cobrir o ponto decimal do display com fita isolante ou marcador permanente senão vai mostrar 12.0V ao invés de 120V.

Ligando o monstro

Ao energizar o trafo, o LED amarelo permanece iluminado. Esse LED amarelo é um indicador de que há energia no pós-fusível. Dessa forma, o trafo também está energizado para gerar a famosa tensão de stand by. Ok, ok, ok; vamos lá, nutellinha: a coisa aqui é feita para aproveitar peças, reduzir o desperdício, poupar o meio ambiente, consumir o mínimo de recursos próprios, trabalhar com elegância e inteligência. Não tenho mamãe, papai ou aquele patrocínio cool que você tem. Logo, foi assim: não tinha uma chave de pressão que pudesse substituir a original do equipamento, que estava deteriorada, e não iria comprar uma. A opção foi utilizar uma chave menor, de baixa capacidade para acionar um relé e abrir a saída dos 120V. E tudo isso eu tinha em casa. Perfeito! 





Tomadas padrão novo, fusível 220V (preto) e 120V (gelo)


O acabamento 'acrílico verde' do furo do display é recorte de garrafa PET e se o display fosse LED verde, teria ficado perfeito!




Medição da saída do trafo

E aqui, fotos do antigo soldado que muito me serviu. Agora vai pro descarte no Eco Ponto seguir seu curso natural. 






AT5 Slim Power - a super fonte de bancada inteligente de alta performance

Tudo começou por volta de junho desse ano, quando minha guerreira fonte de bancada passou a se entregar após anos de serventia. Tinha algumas ideias para dar um upgrade nela, já que meus últimos projetos precisaram de mais corrente do que ela poderia entregar, mas esbarrei na trabalheira que seria fazer um trafo maior caber lá dentro (não, eu não quero usar uma fonte chaveada nisso!) e ainda dar conta da dissipação de calor que aumentaria muito dentro daquele gabinete pequeno. Em agosto decidi que partiria do zero, um novo e empolgante projeto que terminaria na montagem de uma super fonte de bancada inteligente, com alta performance, proteções de ponta a ponta e um tamanho reduzido para ser prática de ser transportada. Hoje é dia 02/11 e alguns meses foram engolidos durante esse projeto, que me tomou bastante tempo e planejamento.

Antes de continuar e para não correr o risco de ser redundante nesse post, peço que conheça a fonte antiga F5812ADJ que se aposentou (e que vai servir suas peças para testes e outros projetos, é claro!) e também leia em seguida a postagem que deu início a essa jornada, lá em agosto.

Sou das antigas e fonte de bancada pra mim, tem que seguir a premissa raiz trafo-retificação-alta filtragem. Temos um mercado chinês muito eficiente inundando as prateleiras com fontes de bancada a preços atraentes mas também com projetos falhos e sem a utilização de transformador isolador, o que naturalmente inclui uma fonte chaveada barata, de alta corrente e sem qualquer tipo de proteção. Aí, meu guerreiro diyman, você está há dias em cima de um projeto utilizando uma fonte xing ling dessas e o chaveamento vai pro saco largando corrente e tensão em alta escala no seu adorado circuito. Imagina só. Isso sem falar nos ruídos impraticáveis que essas fontes geram, podendo interferir diretamente no seu projeto fazendo com que você perca horas até descobrir o porquê do microcontrolador travar, por exemplo. Por isso quis fazer uma fonte com rígidos controles e proteções. Já havia mencionado no post que deu início ao projeto sobre as características que eu gostaria de ter e ao mesmo tempo, fui atualizando novas funções ou retirando funções que antes pareciam interessantes. Ao mesmo tempo que sou prático, sou um burocrata quando se trata dos meus projetos. Agora, com o projeto concluído, veja como ficou:

Entrada: 220V ±7,4A (full power)
Proteção entrada: fusível, filtro de linha full, varistor, terra lift/ground
Saída: 1.1V a 19,4V x 4,2A x 19,300uF (entra em proteção a partir de 4,33A, trafo de 16V + 16V x 5A)
Proteção saída: curto-circuito e/ou corrente acima de 4,33A, temperatura máxima de trabalho, queda brusca de tensão, tensão de descarga (retorno), descarga brusca do banco de capacitores, carga mínima instalada para garantir corrente de ajuste atualizada
Display: tensão e corrente atuais
Ajuste: fino via potenciômetro linear
Dissipação: passiva até ±60°C, cooler aciona discretamente para equilibrar a temperatura do dissipador principal. Acima dos 85°C entra em proteção térmica acionando o cooler a full power, desligando o trafo de potência e permanecendo nesta condição até que a temperatura baixe a níveis seguros de trabalho
Porta serial: comunicação direta com o microcontrolador a partir da placa Arduino para atualização do código sem precisar abrir o equipamento e retirar o chip
Chave lift/ground: permite unir o comum do circuito da fonte ao terra da tomada ou separar, funcionalidade muito eficiente para algumas situações
Stand by: fonte permanece com as proteções ativas mesmo em espera, desliga fisicamente o trafo de potência da rede elétrica descarregando todo o circuito e mantendo o mínimo de consumo associado apenas às funções vitais (fontes independentes)
LEDs e outros indicadores: fonte possui diversos alertas sonoros e visuais para eventos de proteção, acionamento etc.
Superdimensionamento: todos os circuitos de potência foram superdimensionados para trabalhar com o mínimo de resistência natural dos condutores e componentes, resguardo de potência para trabalho com folga
Dissipador unificado: grande vantagem para monitoramento de temperatura de trabalho e para manter integrados e transistores com equilíbrio térmico

Basicamente é isso.

Não tem muito mistério além do código, a fonte trabalha normalmente com o adorável LM317 de servo mestre e um booster de corrente com dois transistores Darlington TIP125. Alguns vão dizer que eu poderia ter utilizado apenas um TIP125, eu sei disso. Mas por que fazer o carinha trabalhar sozinho perto do seu limite se podemos aprimorar com elegância e colocar mais um?! Outros dirão que eu poderia ter utilizado um transistor de maior capacidade ao invés de dois. Eu também sei disso. Essa fonte foi montada com peças que eu já tinha em casa, não é um projeto nutellinha com verba ilimitada da mamãe e do papai ou de patrocínio. Aqui o negócio é raiz, é aproveitar ao máximo a vida útil dos componentes, é enxugar custo sem perder qualidade e poupar o meio ambiente. E antes que digam 'ahhh não precisava desse cooler aí dentro pra dissipar só essa correntezinha porque o componente aguenta', o projeto é compacto e sempre faço vários testes para determinar se isso vai ser realmente necessário. Nesse caso, foi. E ele só opera se preciso, não fica girando o tempo todo. E outra, você que fica criticando projeto alheio, deveria saber quanto calor um transistor Darlington gera... agora imagina dois num gabinete pequeno sob alta corrente (4A não é pouca coisa) por várias horas ininterruptas. Funcionaria sem o cooler? Talvez. Mas será que o LM317 seria capaz de se manter trabalhando firme sob altas temperaturas? E quanto tempo essa fonte iria funcionar sem dar problema?! Viu, esses questionamentos se tornaram irrelevantes agora, jovem.

Mas vamos voltar ao ponto, já que esclarecemos os fatos. 

Quando alimentada, a fonte é acionada parcialmente via fonte de stand by, mantendo a potência desligada. Ela aciona o cooler rapidamente, acende o LED azul e logo se apaga, desligando o cooler e acionando o LED vermelho de stand by. Isso é importante por duas razões básicas: a primeira, para poupar a potência e claro, economizar energia; a segunda, para manter o cooler lubrificado e ativo, evitando que o rolamento fique engripado por falta de uso. Ao pressionar o botão power, a fonte faz um teste rápido (bip + piscadas LED amarelo) e aciona a potência, liberando tensão na saída, ligando o display frontal e o LED verde. A partir desse momento, a fonte está num estado de operação, basta selecionar a tensão desejada.

Proteção contra curto-circuito e overload

Em operação, quando a corrente exceder o valor de 4,33A levará o sistema de proteção contra sobrecarga ser acionado via ATMEGA, cortando a alimentação AC do próprio trafo de potência, protegendo toda a etapa, inclusive os diodos retificadores. É uma proteção em linha completa, cortando toda energia da potência e não somente das saídas DC. A mesma proteção é aplicada quando há curto-circuito na saída. A ação é a seguinte: corta a alimentação AC do trafo, bip, duas piscadas no LED amarelo, display frontal e LED verde se apagam. Essa condição permanecerá enquanto houver sobrecarga ou curto na saída da fonte.

Proteção contra alta temperatura de trabalho

Há duas proteções contra temperatura alta de trabalho na AT5. A primeira é controlada pelo ATMEGA e assume que partir dos 85ºC medidos no dissipador principal ocorrerá o seguinte: corta a alimentação AC do trafo, bip, LED azul acende e aciona o cooler full power, display frontal e LED verde se apagam. Essa condição permanecerá por aproximadamente 1 minuto para baixar drasticamente a temperatura de trabalho da potência. Após esse período, a fonte será acionada automaticamente alimentando a carga se a temperatura estiver dentro da faixa segura.

A segunda proteção contra alta temperatura de trabalho é mais robusta e conta com um termistor que controla o aquecimento do dissipador. Essa proteção adicional foi instalada justamente nos testes de equilíbrio térmico da fonte, nos testes finais. Foi verificado que com o gabinete montado e alimentando uma carga a partir dos 2,5A o dissipador aquece bastante, distante do valor máximo determinado na primeira proteção térmica, mas bastante acentuado para os meus parâmetros particulares. Isso poderia levar o LM317 a entrar em proteção rapidamente ou ainda reduzir bastante a vida útil do conjunto da potência, elevando a temperatura interna do gabinete e tornando seu funcionamento 'desconfortável'. Lembrando que alguns componentes não gostam de ambientes muito quentes, como os eletrolíticos.  Então, adicionei esse segundo termistor que atua diretamente no driver de acionamento do cooler, fazendo com que ele gire lentamente a partir dos 50ºC para equilibrar a temperatura do dissipador. Esse giro pode ser aumentado ou diminuído automaticamente de acordo com o incremento de temperatura medido, se tornando um eficiente mecanismo de controle e aumentando a vida útil da potência. O cooler gira de forma tão discreta que mal pode ser ouvido durante a operação.

Superdimensionamento do sistema

A premissa do diyPowered é bastante clara: respeito aos limites dos componentes. Se eu tenho um trafo que pode entregar 5A em full power, eu deveria operá-lo até os 4,2A ou ainda 4,5A. Isso causaria ainda bastante aquecimento, mas distante do que poderia ocorrer se tentássemos tirar toda a sua capacidade. Logo, se eu tenho um projeto que consome 5A em full power, qual a corrente do trafo que eu vou usar? Você talvez diga '5A'. Talvez muitos digam isso. Eu digo '6A'. Folga, pessoal. Se você quer fazer alguma coisa direito, se você quer projetar algo de qualidade, faça com que os componentes trabalhem abaixo de sua capacidade máxima. Isso é elegante, isso é inteligente. Foi assim que muitos equipamentos foram projetados há 20, 30, 40 anos e é por esta razão que muitos deles estão por aqui até hoje: receivers, tape decks, sintonizadores de rádio, CD players... Por isso montei essa fonte com folga mesmo com esse trafo de 16V + 16V x 5A que em teste de carga chegou a fornecer 5,4A sem queda de tensão. Mas aqui a gente faz a coisa do jeito certo e a AT5 ficou limitada aos seguros 4,2A entrando em proteção aos 4,33A. Corrente mais que suficiente para a grande maioria dos projetos. Tenho um outro trafo de 1200VA que pode entregar facilmente 12A, 15A numa tensão máxima de 13V mas achei meio desnecessário tanta corrente nesse momento e o monstro aí vai ficar para um próximo projeto.

Na retificação, temos dois diodos 6A6 brutos e sem frescuras e um banco de capacitores de 19,300uF. Tudo montado de forma elegante e estudada, cabeamento da potência com bitola de respeito e fixação por presilha. A tensão que alimenta a lógica, stand by, LEDs e cooler vem de uma fonte dedicada, também por trafo, não utilizando corrente alguma da fonte de potência.

Proteção AC

Na entrada de linha AC, temos o clássico fusível e um circuito de filtro de linha full, com tudo que se tem direito, até um varistor, e um cabo de força de respeito. Uma chave no painel frontal permite unir o terra da tomada ao comum da fonte, função muito desejada e pouco vista nas fontes do mercado. Aproveitei ao máximo cada espaço do gabinete, fixando componentes e placas de forma inteligente para facilitar o cabeamento e pensando sempre na dissipação, transferência de calor e claro, pensando nas manutenções futuras. Essa última, parece ser esquecida pelos projetistas e engenheiros: qualquer equipamento vai demandar algum tipo de manutenção futura e parece que isso não é levado em conta na maioria dos últimos equipamentos que reparei. Um bom exemplo disso pode ser ilustrado por alguns notebooks e nobreaks que precisam ser quase que totalmente desmontados para acessar partes críticas.

Gabinete escolhido

Esse é um velho conhecido: um gabinete de nobreak NHS de 600VA. Possui uma boa estrutura, boa resistência mecânica e uma razoável ventilação natural que foi melhorada ao retirar as tomadas traseiras e fixar uma tela. A única coisa que não ficou bacana foi a porta serial, que teoricamente deveria caber na parte de trás (já tem essa furação de fábrica) mas não passa de jeito nenhum. Poderia ter limado um pouco mas como já foi bastante desgastante furar esse gabinete (não parece mas a chapa utilizada é resistente) achei mais fácil apenas retirar a capa metálica da porta e parafusá-la assim mesmo, como está.

Esse gabinete é bastante compacto, tem uma cara de fonte de bancada moderna e fazia algum tempo que vinha pensando em usá-lo para esta finalidade. No mais, pretendo gravar um vídeo com a fonte em funcionamento pra ilustrar melhor todo o projeto. Apesar de toda trabalheira que deu, ficou muito eficiente e é sem dúvidas uma evolução à fonte anterior.


Corrente máxima em teste inicial

Teste raiz!

Tomada de ar eficiente

Lateral detonadinha do gabinete

Frontal desligado (acabamento ficou ruim mas tá valendo)

Fonte acionada (tensão mínima)

Fonte acionada (tensão máxima)

5V sem carga e terra isolado

5V sem carga e terra conectado ao comum (LED laranja)

Fonte em stand by

Detalhe do dissipador principal e da fiação

Detalhe da fixação dos componentes principais, ainda no início do projeto (embaixo do relé preto ali no meio fica a fonte dedicada para lógica e acessórios)

Desleixo, corte de custo ou tudo isso junto num projeto?!

Session.

Já declarei minha preferência pelos equipamentos SMS aqui antes e faz muito tempo que venho pensando em criar esse artigo sobre a TS Shara. Quem acompanha a trajetória do diyPowered já conhece bem as premissas e valores que sustentam essa ideia/movimento pró qualidade. E a TS Shara é uma das marcas em que eu não confiaria meus equipamentos. Uma pena, uma empresa nacional com 30 anos de história...

Já tive a oportunidade de trabalhar com alguns modelos de no-breaks e de estabilizadores de tensão da marca e em raras ocasiões pude me deparar com um equipamento projetado de forma eficiente, respeitando os componentes, pensando nas futuras manutenções que todo e qualquer equipamento de proteção deverá passar ainda. Repito: raros modelos em que eu já tive a oportunidade de trabalhar pude conferir qualidade e preocupação com um projeto bem executado.

Os gabinetes

Os metálicos, em especial, são frágeis, montados em chapas finas e costumam vir com pequenos amassados já de fábrica. Os parafusos dificilmente fixam corretamente a tampa e as coisas parecem que não foram feitas umas para as outras, deixando frestas e muitas vezes um aspecto relaxado que me deixa sempre bastante decepcionado.

Os gabinetes plásticos, em geral, possuem até boa concepção mas em alguns casos falham no quesito ventilação natural e fixação dos componentes: fiação encostando no transformador por exemplo, é pedir para ter problema. Em questão de design até que são atraentes, pena que internamente a atração para o técnico reparador seja repulsa.

Ativos

As placas possuem um tamanho bastante razoável, tornando os equipamentos compactos. Mas isso entra em conflito direto quando o assunto é manutenção. Vários componentes são em formato SMD, como resistores, capacitores e até o queridinho LM324: tudo SMD. Gosto de SMD mas em circuitos que não vão demandar uma manutenção futura grande. Daí você tem uma PCI frágil, trilhas estreitas, componentes SMD próximos demais e pontos de aquecimento tão mal dimensionados que a placa chega a ficar toda marcada. E alguns componentes esquentam muito mesmo... Tem uma autorizada aqui na cidade que nem se dá ao trabalho de reparar, já orça placa nova. Isso também vale para alguns modelos da NHS - outra nacional com décadas de história - que tive por várias ocasiões em bancada, que também vêm cheios de SMD e você se obriga a trocar a placa inteira para evitar o risco e o trabalho chato que é mexer em SMD. Mas diferentemente da TS Shara, os equipamentos da NHS seguem um certo protocolo de produção que, embora cometam os mesmos erros na concepção desenfreada por SMD, ainda conseguem se distanciar da TS Shara em qualidade. Fora que os NHS raramente dão problema. Mas fica pra um outro post a NHS.

Situação difícil de entender (ou pegadinha do projetista)

Dia desses veio para minha bancada um TS Shara UPS Mini 600 Bivolt Black com um defeito comum: desliga as saídas ao faltar energia elétrica. Para os mais experientes é uma barbada. Mas nunca é uma barbada quando se trata de um TS Shara! Fiz a troca do relé de saída, que realmente estava com os contatos ruins, mas ao testar o no-break ele ainda apresentava o mesmo problema. Testei TUDO EXAUSTIVAMENTE por horas e o problema persistia. Chamei o Vinícius (voa.aquino@msn.com - quem fez as melhores fotos desse post!) pra dar uma olhada junto comigo porque naquela tarde eu já havia enfrentado emoções fortes com um cliente folgado em atendimento de campo. Depois de uns dez minutos pensando coletivamente, chegamos a uma conclusão que nos deixou com cara de idiotas: alguém na TS Shara achou cool colocar seis tomadas num nobreak de 600VA com uma bateria de 2A, mas achou coolest destinar 3 dessas tomadas apenas como tomadas protegidas. Ou seja, enquanto eu continha uma vontade imensurável de atirar aquele embuste comercial na parede também tentava entender o que levou essa gente a fazer essa cagada. Imagina o usuário final ligando seu computador ali nas tais tomadas protegidas e quando falta energia elétrica, ele perdendo todo seu trabalho... e ainda vai ligar na loja que vendeu pra ele puto da cara. Até que eles possuem um álibi: uma etiqueta muito da mal feita ali atrás, só pra dizer que não avisaram... que vergonha. É algo comum em alguns modelos a distinção de tomadas UPS e tomadas estabilizadas, claro que é. Mas o correto é que o fabricante deixe isso explícito no equipamento. No mais, explanada minha repulsa às cagadas comerciais dessa marca em questão, quando você quiser saber mais sobre algum equipamento, consulte um técnico e não acredite em vendedores. Eles só vendem. Eu só venderia algo que eu comprasse.

Então, quando for comprar no-break e o vendedor lhe oferecer esse embuste aí, dê uma risadinha de canto e pergunte se tem outra marca. De preferência SMS Legrand, que dificilmente dá problema. E quando um SMS dá problema, é fácil reparar e é mais fácil ainda conseguir peças pra ele.

Me lembrei agora de um outro caso curioso com a marca: um modelo diferente desse não trazia identificação correta da tensão de saída: foi impresso 115V/220V sendo igual para a entrada. Erro de digitação?! Ao ligar na tomada pra testar, a saída dele era 220V quando deveria ser 115V. Esse no-break era novo, acabava de chegar da fábrica e iria para uma cliente. Identifiquei as saídas pra evitar problemas...

Importante lembrar que...

Só pra constar, a ideia aqui é mostrar fatos e não denegrir a imagem ou a história da marca TS Shara, que passa dos 30 anos de história e é nacional. Valorizo muito o trabalho, a tecnologia e a produção do nosso país, mas sou exigente nisso porque lá fora, se um engenheiro ou técnico reparador visse esse nível de projeto, certamente teríamos mais posts como este. Aqui, trata-se de um artigo CONSTRUTIVO para fins de melhorias em processos e projetos. 

Uma grande fonte de informação sobre como anda a qualidade dos projetos - e isso vale para qualquer segmento fabril - pode estar justamente lá na outra ponta: o técnico reparador. Esse carinha tem muita informação e acesso a praticamente todas as marcas do mercado. Passem a consultar o técnico reparador que, sem sombra de dúvidas, seus processos serão aprimorados

E sobre a SMS Legrand, não tenho qualquer vínculo com a empresa e este não foi um post patrocinado.


Detalhe de carga na bateria

Bateria muito próxima ao transformador que é muito
próximo da placa que fica colado na fiação


Frontal da carcaça

Aqui, o embuste: três tomadas UPS e três 'protegidas'

Muito SMD...

Detalhe da face cobreada da placa

Etiqueta de identificação do produto


Novo projeto - super fonte de bancada inteligente (microcontrolada, digital e ainda sem nome)

Como mencionei lá na página 'produção', a fonte de bancada F5812ADJ está cansada e uma novíssima já se encontra em desenvolvimento. O projeto está a toda e já tenho praticamente todo o programa dela escrito e testado, restando pequenos ajustes que virão com a montagem final dela em gabinete. Por isso achei que já era hora de criar o post desse novo projeto para gravar os logs como antigamente, e também para me guiar no curso atual.

Ainda não tem nome, modelo ou coisa que o valha. Mas já temos algumas características a mencionar:

  • Fonte de alto poder com filtros AC, grande reserva de potência e regulagem ativa controlada digitalmente via ATMEGA;
  • Controle fino de seleção de tensão e amostragem em display LED dedicado;
  • Proteção ativa e rápida contra curto-circuito, carga excessiva (overload) e alta temperatura que desliga a carga, gera alertas sonoros e visuais e em condição de alta temperatura de operação também aciona ventilação forçada (cooler) para resfriar rapidamente todo o sistema (o cooler não é utilizado durante operação normal, apenas em modo de proteção);
  • Alertas sonoros e visuais para todos os eventos;
  • Chaves de seleção de tensão com dupla função: chave para aumentar tensão, chave para diminuir tensão e quando pressionadas simultaneamente, resetam a saída da fonte para seu estado inicial (menor tensão ou zero);
  • Modo de espera (stand by) que mantém sistema pronto para uso com baixíssimo consumo de segundo plano (permite corte da alimentação AC via chave traseira para longos períodos sem uso); somente stand by
  • Cooler de alto rendimento para condições de alta temperatura permite ao sistema uma rápida recuperação do seu estado normal de operação (acionado somente em modo de proteção contra alta temperatura);
  • Ground separado do terra da carcaça (selecionável);
  • Operação em 127V ou 220V selecionável internamente; somente 220V
  • Tamanho reduzido e gabinete com ventilação natural estendida;
  • Dissipação de calor superdimensionada em todos os componentes críticos;
  • Componentes superdimensionados (claro!);

Por enquanto são essas as características ** iniciais ** do projeto, podendo ser alteradas, subtraídas ou adicionadas funções e melhorias.

** 29/08/2020 ---------------------------------------------------------------

Algumas alterações no projeto:

  • Corrente aberta (sem ajuste) com amostragem em display LED dedicado;
  • Transformador dedicado para potência de 16V + 16V x 5A;
  • Alimentação da parte lógica, sensores, proteção (relé, cooler etc.) dedicada;
  • Etapa de potência superdimensionada (5x maior do que a corrente máxima da fonte);
  • Reserva de potência de 18,800µF;
  • Diodos da etapa retificadora dimensionados para 8A 12A; selecionados 6A2
  • Display de operação (tensão e corrente) conjugado para montagem em painel;
  • Gabinete metálico, totalmente blindado, com boa ventilação natural e terra isolável do GND da fonte (útil em algumas situações);
  • Cabo de força padrão novo reforçado;
  • Algumas melhorias no código, em destaque as proteções e tempos de atuação dos sensores;

** 06/09/2020 ---------------------------------------------------------------

Hoje foi dia de furar o gabinete e começar a alinhar os componentes maiores: os dois trafos (potência e acessórios/lógica) e o dissipador de calor principal, que é bem parrudo e dissipa todos os reguladores e transistores do projeto. Um único dissipador para tudo, sim. Dessa forma consigo monitorar a temperatura de trabalho com um único sensor, otimizando meu bloco de códigos e compactando mais ainda o projeto, que conta com um gabinete bastante apertado e dissipação passiva.

Com a folia dos Correios em greve, ainda não recebi alguns componentes do painel e não pude iniciar as furações e definições dele. Também instalei os circuitos retificadores - que na potência, conta com diodos 6A2 e uma super filtragem - e fixei os filtros de entrada AC e o relé do liga/desliga. Esse relé - acho que ainda não havia mencionado - é quem alimenta (AC) o trafo da potência, sendo o responsável por cortar a energia elétrica dele quando o sistema entra em stand by, tornando o consumo de espera extremamente baixo - só fica ativa a fonte de acessórios/lógica. Dessa forma, além de reduzir drasticamente o consumo de espera, também poupa todos os componentes ativos como o transformador, os diodos, o banco de capacitores etc.

Dentro dessa session, também cuidei de manter isolados o GND da carcaça (comum) e o terra que vem da tomada, como já mencionei anteriormente. O que ainda fiquei devendo é se essa comutação será via chave no painel ou na traseira da fonte, e qual tipo de chave será essa. E como não poderia ser diferente, quebrei mais uma broca.

Além do painel que não pude trabalhar por causa dos Correios, preciso de um cabo de força decente para a fonte.

** 14/09/2020 ---------------------------------------------------------------

Dia de passar cabeamento pelo gabinete, interconectar os circuitos e de testar a potência. Tudo correu como previsto no papel, potência testada assim como os reguladores e demais drivers acionadores. Aproveitei para fixar o cooler da proteção térmica, testar o seu acionamento e também já fixei a placa lógica ao gabinete. Com sorte eu recebo essa semana algumas coisas dos Correios para dar prosseguimento ao projeto. 
 
** 26/09/2020 ---------------------------------------------------------------
 
Depois de muita espera, consegui resgatar as peças numa agência dos Correios... Já furei o painel frontal para encaixar o voltímetro/amperímetro e selecionei os dois LEDs frontais principais, indicadores das funções e status. São dois LEDs bicolores, um indicando status e o outro indicando se a fonte está ligada ou em stand by. Finalmente vou poder tocar o projeto novamente!

** 27/09/2020 ---------------------------------------------------------------

LEDs, display, botões power e de seleção de tensão afixados, fiação passada. Agora é interconectar a lógica ao conjunto e iniciar os testes práticos. 
 
** 29/09/2020 ---------------------------------------------------------------
 
Cabeamento do painel frontal interconectado à placa lógica e de controle. Fiação extra para os componentes ativos passados e agora é a parte que vai ficando mais divertido: ligar tudo e otimizar o código.  

** 04/10/2020 ---------------------------------------------------------------
 
Tudo interconectado e primeiro teste com carga executado com sucesso. Preciso rever o alinhamento dos componentes no dissipador, alguns estão com deficiência na dissipação de calor. Também configurei a porta serial que permite gravação de programa diretamente na fonte, sem retirar o ATMEGA, utilizando a placa Arduino Uno. Isso ajuda bastante a atualizar e otimizar o programa sem ter que ficar retirando e colocando de volta do ATMEGA.
 
Estou próximo de finalizar o projeto, faltando apenas alguns ajustes e correções.

** 12/10/2020 ---------------------------------------------------------------

Dia de ajustes. E de modificações na etapa de potência, que tinha uma queda de tensão grande quando  se aumentava a corrente. Problema resolvido. Já estou na etapa final, faltam poucos detalhes pra acertar como o disparo das proteções de overload e temperatura. No mais, a fonte me parece mais um projeto grandioso. 
 
** 15/10/2020 ---------------------------------------------------------------
 
Desconfio que os diodos ou o trafo da potência estejam com alguma deficiência na entrega de corrente, porque depois dos testes do dia 12/10 a tensão passou a cair bastante novamente. Em suma, vou testar o circuito regulador com uma fonte externa para verificar se meu trafo/retificador está bom.  

** 16/10/2020 ---------------------------------------------------------------
 
Como diriam no Hackaday, FAIL OF THE WEEK! Levantando meu esquema elétrico do circuito regulador - depois de rever meu trafo e retificadores de alta corrente - notei uma deficiência absurda na regulação quando em carga a partir dos 2A. Impensável para um trafo da Comando de 16V + 16V que entrega até 5.4A, comprado há uns 3 anos.

Solução: a simplicidade é sempre a melhor solução. Vou utilizar o bom e velho potenciômetro para fazer a regulagem da tensão e deixar de lado a seleção digital da tensão. Vai me poupar tempo - já que preciso muito que essa fonte seja concluída por conta de projetos parados na bancada - e estabelecer ainda mais confiabilidade ao projeto. No fim, foi até bom dar essa zebra aí: imagina ter na saída da fonte um circuito complexo de alta corrente alimentado com 5V; agora imagine uma falha na regulação digital que faça com que a potência abra toda a tensão disponível na saída. Imaginou? Pois é. Dificilmente isso vai acontecer se a regulação for feita pela boa e velha eletrônica.

Por fim, todas as demais funções atribuídas ao microcontrolador permanecerão (power, cooling, temp, overload etc.) ficando de fora somente essa função da regulação digital. Ontem fiz o teste de carga com o circuito da potência sendo regulado por potenciômetro e nenhuma queda de tensão relevante foi notada, tudo dentro do esperado - algo na ordem de 12.2V que caiu para 12.0V o que é mais do que normal para uma carga máxima de 5.4A. No mais, agora a coisa fica pronta!

** 18/10/2020 ---------------------------------------------------------------

Reta final! Finalmente afinei o circuito de potência e conseguir tirar corrente mais que suficiente para a grande maioria dos projetos. A fonte antiga tinha uma corrente máxima simultânea de 3A, mas limitada em 1A por linha de regulagem, o que me deixava na mão às vezes em alguns projetos e testes.

O trafo promete até 5.4A com alguma queda pouca de tensão, mas como sigo fielmente as premissas diyPowered não vou fazer o carinha aquecer muito: limitei a corrente máxima final para 4.2A, entrando em proteção a partir dos 4.33A ou em pico. Também modifiquei a etapa de potência e passei a utilizar transistores Darlington porque são robustos, possuem um ganho absurdo e são altamente confiáveis. Também finalizei o painel frontal adicionando a chave LIFT/GROUND que permite conectar ou desconectar o comum da fonte ao terra da rede elétrica. Fiquei muito satisfeito com o desempenho da fonte, agora que o hardware foi finalizado. Adiante, virão os testes de temperatura com o gabinete fechado, para ver como se comporta o sistema. O projeto é tão completo que talvez mereça um vídeo à moda PROCATER e afins, vamos ver. 
 
** 25/10/2020 ---------------------------------------------------------------
 
Potência redondinha, tudo muito afinado. Mas surgiu aquele probleminha clássico de dissipação a partir dos 3A. O dissipador é parrudo mas temos ali transistores Darlington, né. Nem preciso dizer o quanto aquecem. O gabinete é pequeno, o projeto é compacto (como quase sempre) e a partir dessa corrente ele aquece bastante, não chega ao ponto de entrar em modo proteção mas chega perto. Daí a solução vai ser: a partir da temperatura X o cooler começa a girar muito devagarinho só pra circular ar dentro do gabinete, aumentando gradativamente essa rotação em relação ao aumento da temperatura. Em algum momento haverá um equilíbrio térmico entre o calor gerado e a circulação do ar, tornando o funcionamento do cooler silencioso e quase imperceptível. Não é a melhor solução, mas dentro do pouco espaço físico que tenho e para manter a fonte funcionando dentro de uma temperatura aceitável, se torna uma boa opção. Lembrar de dimensionar mais o dissipador quando usar Darlington...
 
No mais, daqui a pouco ela dá as caras aqui no site. 

** 29/10/2020 ---------------------------------------------------------------
 
Done! Ajuste fino via termistor (o segundo, de acionamento raiz, sem passar pelo ATMEGA) para excitar a potência do cooler e fazer com que o ar circule a partir do aquecimento extra do dissipador principal. Ficou bastante eficiente, sem barulho e sendo desligado após baixar a temperatura interna. Mais adiante já crio a postagem sobre ela, e vai dar assunto!

Quanto ao nome da criação, ando bastante sem criatividade...

** 02/11/2020 ---------------------------------------------------------------

Central de alarme de incêndio Engesul Intelbras Slim - como transformar em central de alarme residencial?!

Após alguns meses de estagnação e falta de ideias e de dinheiro também (falando nisso, aqui tem meios bacanas de dar aquela mãozinha pro site) ganhei uma central de alarme de incêndio Engesul Slim. Já tinha visto delas pelo comércio, instaladas e funcionando, e sempre me perguntei como essa bagaça funcionava. Dando aquela estudada no manual dela, pude entender que não se trata de nada além de uma central de alarme residencial com foco nos PPCI obrigatórios. Ou seja, é possível adaptar seu uso para monitoramento residencial de portas, janelas etc.

Logo, aqui se inicia a saga de transformar essa central em uma central de alarme residencial. Para começar, vou deixar o link do manual dela para os nerds de plantão torcendo pro link não sair do ar - já que a Intelbras tirou essa central de linha. Mas se isso acontecer e o projeto der certo, vai ganhar asilo permanente no Drive diyPowered.

11/06/2020, 7h40 - Dia 1

Liguei a central pra ver se dava algum sinal de vida e ela pelo menos está ligando. O display está com alguns pontos queimados mas isso se resolve facilmente, já que tenho alguns LCD compatíveis em mãos. As baterias (2x 12V 2,3A em série) estão esgotadas mas vou tentar ressuscitá-las e ver se ainda aguentam algum tempo.

Uma coisa bacana que já gostei nesse sistema é que ele monitora as tensões tanto da fonte de alimentação (DC) quanto das baterias e mostra a informação no display. Olhando aqui por cima parece ser um daqueles projetos robustos, sem frescuras e que dificilmente dá problema. Parece bastante com o projeto da central de alarme ZSE que tive há alguns anos - com a exceção do rádio que ela tinha para sensores sem fio endereçáveis nos setores. Vou fazendo meus experimentos e criando um log nessa mesma postagem para não criar aqueles tópicos mil sobre o mesmo assunto dentro do site.


14/06/2020, 8h04 - Dia 2

As baterias estão mortas, mas isso já era esperado mesmo. Testei os disparos e descobri como funciona o gatilho dos laços (ou setores) para que a central acione o alarme geral: quando o setor está em aberto (NA) com apenas o resistor de 4,7k em paralelo a central entende que houve uma violação de um sensor e dispara o alarme registrando também na memória (RAM) o evento com data e hora e o endereço. Fechando um curto no setor, a central entende que os sensores estão em espera e a central segue apenas monitorando. Isso nos diz que preciso desenvolver (ou encontrar no mercado) sensores do tipo NF que se torne NA na violação. Fácil.

O display está mesmo meio esquisito, mas talvez seja 'normal' que ele trabalhe meio 'borrado', só vou saber quando trocar ele. No mais, preciso dessas baterias para prosseguir com a saga. Ainda não entendi completamente o funcionamento do sistema, como por exemplo na hora de bloquear ou liberar os laços, ela só habilita dois laços ficando o 3 e o 4 inativos com traços (---) mas isso fica pra depois.

Como já sabemos que o circuito está ok, vou verificar esses laços 3 e 4 fisicamente na placa pra ver se tem algum dano e depois já limpo e monto a central pro aguardo das baterias.

28/06/2020, 14h25 - Dia 3

Falei antes que não sabia o porquê de os laços 3 e 4 estarem com traços (---) na configuração. Descobri que eles ficam assim porque não foram cadastrados os pontos. Fiz um teste e deu certo. As baterias ainda não consegui reposição por falta de dinheiro mesmo, mas como não há pressa... vamos brincando. Mais adiante pretendo montar um sensor experimental para aberturas (portas, janelas, portões etc.) talvez até sem fio. Vamos ver.

Cícero in memoriam (26).

19/08/2020, 10h52 - Dia 4

Esse projeto entrou oficialmente para a regra dos seis meses diyPowered a partir de hoje: reza a lenda interna que se um projeto permanece estagnado por seis meses ele é encerrado. Uma das razões dessa falta de continuidade nesse projeto (além da falta de $$) é que talvez ocorra uma mudança de endereço (talvez de Estado) e os esforços para instalar a central podem ser em vão nesse momento. E também tem o projeto da nova fonte de bancada que emerge com mais urgência porque a antiga está praticamente parada. 
 
09/11/2020 
 
Estamos quase fechando o ciclo dos seis meses e tive uma ideia para utilizar o gabinete dessa central em outro projeto, já que agora moro em apartamento e sinceramente, perdi o tesão nessa central. Aguarde! 

10/11/2020
 
Pois bem. Há muito tempo venho pensando em montar um carregador de baterias inteligente para motos e carros mas não conseguia de jeito nenhum um gabinete bacana e resistente para montar todo aquele hardware bruto. Até dia 09/11/2020. Tenho um trafo bizonho que vai servir perfeitamente para esse projeto e todas as peças necessárias para montar tudo, faltando apenas coisas como o cabeamento e garras jacaré. Vai ficar padrão!

A partir de agora esta postagem será fechada e todas as atualizações do projeto poderão ser lidas aqui.

Rádio de mesa Philips 1973 - perpetuando memórias!

Philips 1973. Esse tem história. Pega café e senta.

Devanir, dona Deva ou Devinha, minha sogra (amadíssima, sim senhor) me pediu pra dar uma olhadinha nessa relíquia há alguns meses, e claro que não iria me fazer de rogado: pensa numa satisfação pessoal ter um aparelho desses na bancada! O problema era simples: não ligava. Nenhum ruído, estalo, estática; nada. Veio de viagem de Bagé, trazido pela Renata, minha esposa, quando foi passar uns dias por lá em uma das raras folgas que tira no trabalho. Quando vi esse aparelho, fiquei me coçando pra começar logo a mexer nele.

Esse modelo só funciona a pilhas, não possui entrada para energia elétrica. Montei uma fonte rapidamente para os 6V requeridos e comecei a procurar o problema. Sou desses que prefere um trágico 'não liga' a ter que procurar defeito cabuloso do tipo 'não pega FM, só AM'. Ou coisas do tipo. Levando em conta que esses aparelhos foram produzidos por gente muito inteligente, técnicos muito competentes e engenharia raiz, não deveria ser nada muito grave. Meu receio era ter que substituir algum transistor... invólucro metálico, ainda. E a maioria deles, sem meios de identificação - marcação impressa já deteriorada. Imagina. Diodos de germânio, capacitores de alta precisão... No final das contas, o 'grande' defeito se resumiu ao desgaste natural de um dos terminais de um dos transistores da potência. Havia sinais de umidade interna, mas previsível, já que esses rádios eram utilizados, geralmente, na cozinha, onde as donas de casa ouviam os programas enquanto cozinhavam. Terminal restaurado e aparelho recuperado. Simples assim. E pensar que hoje em dia, um 'não liga' geralmente implica em troca de 'placa de sinal' ou coisa do tipo, já que dificilmente se dá manutenção nos equipamentos modernos. Essas infotrônicas da vida. E viva o consumismo.

Uma restauradinha de leve no dial, que estava 'embaçado' pelo tempo e carcaça lavada deixaram o carinha aí muito elegante e de cabeça erguida de novo. Também adaptei uma entrada AC pra que não fosse necessário utilizar pilhas. Deva ficou faceiríssima! Ela ouve com frequência - trocadilho imperdoável - programas de rádio e poder contar com esse Philips que era de sua mãe, foi mais que um presentão. Ela confessou que pensou em me pedir para adaptá-lo para uso em energia elétrica, mas achou abuso demais! Imagina, né. Aqui é serviço completo com direito a (boas) surpresas! Fiquei extremamente feliz em poder dar sobrevida a esse aparelho e, de certa forma, perpetuar as memórias que ele representa.

Algumas fotos do Philips. Não encontrei o modelo dele, mas em pesquisas, vi que data de 1973 ou muito próximo a essa data. Se você sabe qual é o modelo ou possui alguma informação adicional, queira deixar nos comentários para que eu atualize a postagem.






Reparo condicionador de ar portátil Philco PH11000QF

Session.

Este é um daqueles casos em que a engenharia se prostitui: aparelho portátil que promete 10.000 BTU com toda praticidade de não depender de instaladores e furos nas paredes. E que também não funciona bem.

Para começar a explicar, esse engodo vendido pela Philco (que é uma das marcas na minha black list de fabricantes low cost) além de não condicionar a temperatura do ambiente de forma satisfatória, também não consegue trabalhar em silêncio. Um barulho infernal sem parar. Mesmo na função ventilação, é altamente ruidoso. Um projeto fadado ao fracasso desde o início. A troca de ar é totalmente ineficaz - para não dizer burra - já que o ar quente que sai pelo tubo é roubado do ambiente interno, ou seja, parte do esforço do aparelho é cuspido janela afora, tornando mais burro ineficiente ainda seu funcionamento. O correto - e que muita gente acabou fazendo nesses casos, vide Google - seria ter dois tubos para fora do ambiente, para que a troca não interferisse no ambiente interno. Tecidos meus argumentos para com a engenharia da Philco, vamos ao defeito.

Uma bela noite de verão, utilizando essa coisa apenas como ventilador, ela simplesmente se desligou. Não era falta de energia elétrica, nem havia desligado via timer. Parou mesmo. Para minha sorte, tinha um ventilador de mesa para salvar a noite. 

Pela manhã, abri a geringonça para ver e... Viper 22A. Sim, aquele ingrato presente em quase todas as fontes chaveadas xing-ling. Esse carinha até cumpre seu papel, mas quem projeta as fontes coloca toda sua confiança sobre ele, sem qualquer respeito com o bom senso. Daí, um belo dia, esse carinha se revolta e abre o bico. De cara, já pensei que fosse ele. Nem me preocupei, deixei de lado para comprar o ingrato e trocar no dia seguinte. No dia seguinte, lá fui eu verificar a fonte. Claro, antes de trocar o Viper, fui verificar mais alguns detalhes. Macaco velho. É uma fonte muito simples, sem muito o que se dizer: relés para acionar os motores e seus estágios de velocidades, relé parrudo pro compressor, fusível padrão na linha... Fui medir um 7805 que é o cabeça de todo o start do aparelho e lá estava um curto. Mas olha, é difícil esse regulador entrar em curto... Até hoje, nesses muitos anos de bancada, não me lembro de pegar algum assim. Geralmente ele estoura, ou queima e fica aberto. Mas em curto, ainda não vi. Fui medindo para trás dele, diodos. Um schottky de 2A que gerava a tensão principal de tudo estava totalmente em curto, impedindo o Viper de partir. Muito eficaz, menino. A maioria dos reparadores porcos colocaria qualquer diodo no lugar, o aparelho ligaria e voltaria para a casa do cliente com o diagnóstico mais mirabolante do mundo que custaria nada menos que R$ 200. Claro que eu não tinha o mesmo diodo para trocar, mas tinha um schottky parrudão de 5A de características muito próximas numa sucata. Soldei por baixo da placa mesmo, para testar, porque a furação do diodo original era bem menor. Solda, põe na tomada e BIP! O ingrato retorna.

Deixei ele ligado 'gelando' (hahaha) e testei as tensões. Tudo normal. O erro da Philco - e de muitos fabricantes - é colocar um diodo de 2A para sustentar um sistema que vai consumir 2A. Não que, necessariamente, seja este o caso, até porque não cheguei a me dar ao trabalho de medir a corrente total desse sistema em full power. Mas para um schottky entrar em curto desse jeito, só pode ser cagada. Por que os aparelhos mais antigos que utilizam os mesmos diodos seguem funcionais após 10, 20 anos de uso? Projeto bem feito.

Assim como para a área da saúde a cura não é bom para os negócios, também não pode ser para a indústria eletroeletrônica. Imagina que louco você comprar hoje um notebook, um aparelho de TV ou som que vai funcionar sem qualquer problema por pelo menos 10 anos! Não, isso não vai acontecer.

Ah, e não comprem esses condicionadores de ar portáteis. Nem as coisas da Philco.










** 22/12/2020

O defeito da vez é... o painel touch dessa joça. Por sorte tem controle remoto porque ele não funciona de jeito nenhum, e é intermitente porque às vezes decide funcionar. Piada né. Engraçado que a Philco já produziu coisas muito boas mas deve ter ido na onda de algum economista que não resolve nem a própria vida financeira e que manda as empresas baixarem custos de produção sem levar em consideração a queda na qualidade.

 

** 12/11/2021

Atendendo a um pedido antigo ao qual confesso ter esquecido, aqui vão as fotos da placa e suas conexões para referência.







** 08/03/2022

Ainda falando desse display 'touch', agora deu pau de vez. Na placa, existem contatos que vão até a parte superior, que formam cada botão. O defeito é que ele fica 'apertando' o botão de ligar sozinho, como se estivesse sendo apertado por alguém. Agora imagina no verão, de madrugada, essa coisa se desligando sozinha várias vezes... Solução: remova todos os contatos (aquelas 'molas') e todos os capacitores SMD que ficam na placa, bem junto a esses contatos. 

Agora é só usar pelo controle remoto e torcer pra não dar mais nenhum defeito. Tem coisas que só a Philco faz pra você.




Compartilhe com alguém!