Mostrando postagens classificadas por relevância para a consulta fonte de bancada. Ordenar por data Mostrar todas as postagens
Mostrando postagens classificadas por relevância para a consulta fonte de bancada. Ordenar por data Mostrar todas as postagens

Planejamento e execução de projetos DIY

Pensei que seria interessante contar meus critérios para desenvolvimento de um projeto DIY para aqueles que não conhecem o processo ou que pretendam iniciar no DIY. Talvez fique somente nessa postagem, talvez eu faça mais de um capítulo sobre o tema. A ideia é que essas informações cheguem àqueles iniciantes que não sabem por onde começar e também aos mais experientes, para que possam aprimorar seus processos. 

O projeto no papel é fundamental

Fonte: Internet
Não adianta levar tudo pra bancada e montar. Isso até pode funcionar quando você está com aquela ideia na cabeça e precisa testá-la rapidamente. Mas um projeto requer roteiros bem definidos a serem seguidos para que as variáveis de erro sejam minimizadas ao máximo. Comece pelo básico do básico e coloque no papel tudo aquilo o que você pretende implantar no seu projeto. Se você vai montar um amplificador de potência, anote todas as funcionalidades e itens que você deseja adicionar - peak level, proteção DC, delay output, conexões, etc. - e não se esqueça de nenhum acessório ou componente. Isso evita retrabalhos dolorosos mais tarde, como quando você não prevê o aquecimento da ponte de diodos e tem que abrir espaço para que ela seja afixada num dissipador, por exemplo. É crítico demais para ser corrigido mais tarde, depois de montar a placa e já estar quase finalizando o projeto. Você vai perder tempo repensando o projeto, você vai gastar dinheiro (e mais tempo) se tiver que refazer a placa. E pior ainda se precisar alterar o layout do gabinete. Por isso você deve colocar no papel todos os passos para seguir na bancada. Melhor 'perder tempo' colocando todo o projeto no papel do que depois amargar um projeto mal sucedido. 

Teste todas as etapas

Fonte: Internet
Cada etapa finalizada requer testes. Se você criou o esquema elétrico, por mais perfeito que pareça, mesmo tendo sido simulado no computador com sucesso, ele precisa ser montado fisicamente. Somente assim você saberá onde está aquecendo, se precisa alterar resistores, onde está ocorrendo corrente demais e se os componentes escolhidos estão de acordo com a sua aplicação. 

Ainda tomando um amplificador de potência como exemplo, cada transistor escolhido poderá lhe dar um timbre diferenciado, ou até mais ou menos potência final. Os capacitores eletrolíticos são vaidosos e se você não souber como aplicá-los, seu projeto já vai começar mal. Por isso teste seu esquema em bancada, afine o circuito e seja caprichoso com seu trabalho. 

Selecione os componentes e calcule sua margem de erro

Fonte: Internet
Este é um ponto crítico. Muita gente compra componentes em qualquer loja, de qualquer jeito, sem qualquer procedência. E fica pior ainda quando se trata de integrados e transistores de alto desempenho. Se você aplica uma tensão de 65Vcc - tensão comumente encontrada em amplificadores de potência e fontes simétricas avançadas - num transistor falsificado por algum tempo - equipamento em uso - ele não terá a mesma durabilidade e qualidade sonora de um original. E você também encontrará sérios problemas com aquecimento. Isso sem falar que os falsificados possuem um péssimo acabamento e uma resistência física pobre. Tenha cuidado ao comprar seus componentes e não acredite em valores baixos demais.

Calcular a sua margem de erro durante testes evita que você precise sair de casa novamente para comprar novos componentes - gastando um tempo precioso que deveria ser aplicado ao projeto. E se lembre de que todos os componentes que você utilizou durante os testes não serão utilizados no seu projeto. Isso mesmo. Protótipo é protótipo e, por mil razões diferentes, você utilizará componentes novos quando for montar seu projeto original. Por isso compre mais componentes para testes do que você compraria para o projeto final.

Seja cuidadoso com o layout da placa

Fonte: Arquivo DIY
Muitos erros acontecem porque a placa foi mal desenhada. Interferências, clock, ruídos e até um circuito que se recusa a funcionar. Por isso evite cruzar trilhas de energia com trilhas de sinal, mantenha o transformador de força afastado dos circuitos sensíveis, utilize seções vazias da placa para formar cercas GND e crie barreiras físicas, se for o caso. Calcule cada espaço antes de desenhar seu layout para evitar retrabalhos e gastos excessivos com o projeto. 

Se você for utilizar a montagem ponto a ponto - técnica de soldar os componentes entre si sem a utilização de uma placa - os cuidados deverão ser redobrados para evitar o contato de componentes que possam danificar o circuito. Montagens ponto a ponto - P2P - são práticas e eficazes mas requerem muita organização e cuidado por parte do montador. E não é a melhor forma de se montar um projeto mais complexo, não tenha dúvidas.

Crie um design limpo

Fonte: Internet
Quando for pensar no painel do seu gabinete, faça algo limpo e simples. LEDs em excesso com cores berrantes e alto brilho não são legais, coolers não são necessários para tudo e menos ainda bonitos. E por falar em coolers, prefira não utilizá-los por conta do seu ruído, da sujeira que ele acumula e pela manutenção futura que você será obrigado a fazer. Cooler não é legal, não é bonito e somente se utiliza em projetos onde realmente existe a necessidade da troca de calor auxiliar. Pequenos amplificadores de potência, fontes de média potência e coisas do tipo não necessitam de cooler. E se mesmo assim você julgar necessário - ou apenas quiser, seja lá por qual razão - utilizar um cooler, seja sensato ao escolher um modelo discreto, com fluxo de ar compatível com a aplicação e sem LEDs. E queira instalá-lo em uma região onde não será visto. E quanto aos LEDs do painel frontal, também tenha bom senso ao selecionar o tamanho, o formato e as cores. Menos é mais.

E por fim, dedique tempo ao seu projeto

Se você não dedicar tempo ao seu projeto, certamente uma de duas coisas acontecerão: a primeira - e mais comum - é que seu projeto não vai sair da bancada; a segunda, o projeto não funcionará como você esperava. Tempo é a ferramenta que você mais precisa. Estude seu projeto, se comprometa a iniciá-lo e a terminá-lo definindo seus prazos, conheça novas maneiras de fazer uma mesma coisa e faça tudo conforme você achar melhor, seguindo o bom senso de pesquisar e ser cuidadoso com as etapas. Somente assim os resultados serão positivos. Erros poderão ocorrer, claro. Por isso devemos trabalhar com margens de erro devidamente calculadas, componentes de qualidade e ferramentas adequadas para cada operação. 


Projeto Labrador - H2PV1 Home2Pro Limiter & Clear

Um projeto simples que utiliza componentes simples para criar um ambiente sonoro limpo e com volume constante para quaisquer aplicações em áudio de alta fidelidade

Sempre quis montar um limiter & clear. Para quem não sabe, o clear seria um atenuador de interferências e ruídos, realçador de frequências chaves e pré-amplificador no início do percurso para que o sinal chegue ao clear com equalização flat e nível adequado ao circuito clear. Pois bem. Depois que troquei a placa mãe da Jukebox, o libmad/libavcodec nunca mais funcionou como deveria. Fiz de tudo: atualizei o pacote, atualizei os drivers Realtek e até tentei instalar outra versão do Windows. Nada houve. Obviamente que estamos falando de uma placa mãe mais antiga, não dá pra esperar demais mesmo. Na configuração anterior da Jukebox, a placa mãe era ASUS com áudio também Realtek, mas como se tratava de um modelo bastante recente, tudo funcionava como eu esperava. Mas encurtando a novela, nunca mais consegui ouvir música sem precisar ajustar o volume manualmente, hora porque ficava baixo, hora porque ficava alto demais. Como já fazia um bom tempo que não me metia num projeto, aceitei o desafio e me baseei nas premissas diyPowered de sempre: gastar pouco ou nada, utilizar esquema enxuto e funcional, componentes acessíveis e robustos, configuração simples e perfeita. Iniciei o esquema elétrico tomando por base o super M1 - que possui um pré exclusivo de excelente qualidade - mas alterando alguns parâmetros para que fosse se adequando ao projeto. Perdi - ou ganhei? - algumas horas ajustando e afinando esse circuito, mas valeu muito a pena quando finalmente cheguei ao resultado que eu queria. Quanto ao ajuste automático, optei por montar uma cápsula limiter com um LED 3mm vermelho de alto brilho apontado para um LDR precisamente selecionado a uma distância cravada de 3mm num ambiente interno totalmente isolado e escuro. A configuração foi crucial e perfeitamente encontrada após horas de testes massacrantes. Parece simples - e é - mas no controle dessa interface é que mora o segredo do projeto. Porque se você acha que basta o LED piscar para cair a resistência no LDR, você está enganado. O controle - depois de ser calibrado internamente, claro - analisa a resistência atual do LDR, cruza essa informação com o sinal de entrada e envia para o LED a informação precisa de 'quanta luz' deve emitir e quanto tempo deve se manter iluminado para cada pico de sinal. Seguindo o mesmo princípio, o controle envia para o LED a informação para se apagar rapidamente quando a resistência lida no LDR é proporcionalmente inferior ao necessário para manter a saída constante, o que faria com que o sinal 'caísse' tornando o sinal de entrada menor do que o pico atual. Mais uma vez o circuito de controle atua de forma precisa e rápida sem perder as características originais do sinal. Claro que toda essa função é processada num período de tempo extremamente curto para que consiga acompanhar cada linha de sinal que chega ao circuito. Enquanto você lia essa informação, o circuito já operou a função milhares de vezes. No painel frontal é possível acompanhar a atuação do controle de forma isolada para cada canal por meio de dois LEDs verdes e também existe um controle manual de atuação, para que seja feito um ajuste personalizado de acordo com a fonte de sinal utilizada. Cada pico do áudio original é 'absorvido' pelo controle e tratado, o que faz com que os LEDs do painel se iluminem rapidamente quase que na mesma rapidez com que o controle atua.

Ainda falando da cápsula limiter, os LEDs escolhidos e seus LDRs foram testados e conferidos um a um para que os canais fossem montados de forma idêntica. Dessa forma, o controle possuiria ajustes mínimos para que as cápsulas atuassem na mesma velocidade em ambos os canais. Todo esse cuidado se deve pelo simples fato de que essas cápsulas foram produzidas exclusivamente para este projeto, não se tratando de um componente comercial que se encontra em qualquer loja e que possui a mesma característica em lote. Tudo foi testado nesses LEDs e LDRs antes da montagem e teste para que fosse possível 'tirar' deles tudo o que eles podem oferecer dentro de limites razoáveis de segurança. O LED, por exemplo, trabalha numa condição em que sua sensibilidade de emissão está próxima a 100%. Isso permite que o LED seja capaz de se iluminar tão rapidamente quanto se apagar. Obviamente que isso pode reduzir a vida útil do componente - e que também essa questão foi prevista e bem resolvida: mesmo nos picos extremos, a corrente no LED é controlada para que não danifique nem encurte a vida útil do conjunto, já que se trata de uma cápsula onde não é possível trocar somente o LED ou o LDR. Somente todo o conjunto. E claro que se esse dia chegar, o correto é trocar as duas cápsulas, de ambos os canais, para manter a integridade do sinal em relação ao controle. Trocar apenas uma cápsula e manter a outra já usada é como trocar apenas uma das lanternas de um carro, mantendo uma antiga. Entende?!

Para início de conversa, o esquema jamais poderia alterar o sinal. Isso mesmo. O sinal que entra deve sair da mesma maneira, com as mesmas características, e melhorado em relação ao nível e pureza. Ok: tecnicamente o sinal é alterado de certa forma, mas quando falo que o sinal original jamais poderia ser alterado, me refiro a inserir equalização/loudness, alterar frequências amplas, adição de ruído no processamento do sinal original, etc. Isso é básico, nem precisava comentar aqui. Porque o H2PV1 foi desenvolvido apenas e tão somente para servir como limitador, atuando como um nivelador automático de sinal que permite que a saída de áudio se mantenha mesmo que a entrada esteja em condições desfavoráveis - sinal alto demais ou baixo demais - e por se tratar de um acessório para este fim, não deve alterar a fonte de sinal e suas características originais. O máximo permitido é o clear, que não vai alterar as características originais e servirá como um forte aliado para que o sinal se mantenha estável e limpo até chegar aos seus ouvidos. Aqui, ele está atuando antes do home theater, recebendo sinal do M1, que faz o switch entre as fontes de áudio da TV e Jukebox.

Obviamente que o projeto - como todos os outros do site - é um protótipo e que não possui qualquer preocupação com a estética e mídia de consumo. Fiz por mim, para mim, utilizando tudo o que tenho em casa. Não gastei um centavo aqui. O transformador 12V x 250mA veio da placa de um nobreak que tenho faz tempo - tenho mais dois desses reservados - e todas as peças são de estoque particular; a carcaça utilizada é de um leitor/gravador de DVD ASUS que sacrifiquei há poucos dias, o painel frontal é um espelho (tampa de baia) de gabinete desktop que sobrou no trabalho - novinho, black piano - e os LEDs utilizados são todos de sucatas. O potenciômetro vintage era de um receiver Sonata. Custo zero, benefício garantido. Se algum dia eu tiver muito tempo e muito dinheiro para me dedicar aos projetos, com certeza o Home2Pro será um dos projetos que serão levados para linha de montagem com todas as regalias possíveis. Das internas ao gabinete.

Atenuando os sinais mais fortes e ajustando os mais fracos, o H2PV1 mantém constante a saída de áudio tornando a audição de mídias diversas muito agradável. Ouvir música na Jukebox ficou mais legal ainda, já que conto agora com um circuito dedicado e não mais um software compartilhado que não me entrega o mesmo resultado. Também aprecio um áudio mais limpo e vivo do que nunca, graças ao clear. Posso dizer que montei o meu limiter & clear e que deu tudo muito certo. Muito certo mesmo. O desempenho do humilde equipamento é de surtar quem pagou caro num limiter por aí. Inclusive, com certas alterações no esquema, seria possível montar um pedal limiter para guitarra sem muito esforço. O projeto original é muito flexível, barato e simples de ser implantado para outras aplicações.

Sem mais delongas, vamos aos registros.


Painel frontal (atuando)

Lado a lado com o M1 (em repouso)

Ao ser acionado (LEDs indicadores piscam se OK)


Porque ninguém é adivinha

Detalhe do painel







Log do projeto

01/01/2016 - Esquema elétrico definido e montagem em bancada iniciada
02/01/2016 - Circuito em teste e afinação para checagem da eficiência
02/01/2016 - Testes efetuados em bancada com afinação do circuito, avaliação de eficiência e dinâmica apurada; circuito passou em todos os testes com muito sucesso, áudio limpo e baixíssimo ruído com total controle do nível de sinal na saída; compressor e clear funcionando perfeitamente e já iniciada a montagem do gabinete
04/02/2016 - Pequeno incidente envolvendo o potenciômetro de ajuste da supressão me fez parar o projeto até que consiga outro para substituir. O gabinete está quase pronto, faltando apenas alguns detalhes e a substituição do potenciômetro para prosseguir para testes finais
06/02/2016 - Aproveitando a parada súbita, vou rever o painel frontal do Pro2Home e criar um padrão visual que iniciei no M1. Há erros que são acertos =]
03/04/2016 - Projeto finalizado!

** 26/11/2016

Há alguns meses, o H2PV1 vinha apresentando um forte ruído. Retirei de produção e acabei esquecendo de olhar o problema. Acabei tendo que substituir o potenciômetro de ajuste - e consequentemente o knob, porque o original não encaixava. Aproveitei para dar uma revisada na fonte e fiz melhorias na filtragem e regulagem da tensão de alimentação do conjunto. Tudo colocaod no lugar, e o bicho voltou a funcionar redondamente!


De cima para baixo: HS-1875Mi, H2PV1 e ViAS

Detalhe do LED power 

Como montar um inversor no-break ou UPS 12VDC x 220VAC/110VAC - projeto versátil old school para uso em emergências

Big big session.

Há muito tempo não me dedicava a um projeto novo. O último foi lá em novembro de 2022, a fonte de bancada com LM317 e TIP36, que está firme e forte até hoje, e confesso que já estava sentindo falta disso : )

Como eu falei antes, faz muito tempo que quero montar um projeto de inversor para uso em emergências, como estar no meio do nada e precisar carregar um celular, acender lâmpadas, usar um ferro de solda em locais onde não tem energia elétrica - como um box de garagem, na manutenção do carro, por exemplo - e que fosse portátil e versátil. Não apenas se limitando a isso, o inversor também deveria apresentar um comportamento de um no-break, permitindo seu uso permanente (sempre conectado à rede elétrica) para sustentação de outros equipamentos, já que contamos com um circuito completo de chaveamento, carga e flutuação de baterias. A única ressalva aqui foi que omiti um circuito relevante para um no-break, que pode ser facilmente implementado se essa for a sua necessidade, e que falarei mais adiante sobre ele.

Partindo dessa premissa, fui esboçando cada detalhe do que viria a ser o primeiro projeto de inversor DC/AC diyPowered. E por ser o primeiro, não poderia ser feito de qualquer jeito: precisava ser do jeito diyPowered de criar.

Se você chegou aqui agora e nunca tinha ouvido falar de mim nem do diyPowered, vou tentar explicar de forma rápida o que seria esse jeito diyPowered de criar: 

  • respeitar os limites dos componentes: trabalhar com margem de segurança mesmo que o componente suporte situações atípicas
  • projetar com segurança: prever aquecimentos excessivos e minimizá-los ao máximo possível, gerenciar a proteção dos circuitos e do operador, organizar painéis intuitivos e de fácil leitura
  • reciclagem de lixo eletrônico: reaproveitar componentes em novos projetos, absorvendo parte do lixo gerado por empresas e por pessoas

Existem outros propósitos envolvidos aqui, mas um dia desses eu dedico um post somente para isso. Vamos ao que interessa agora!

Características do projeto


Como sempre, utilizei componentes fáceis de serem encontrados num circuito de baixa manutenção - e que fosse de fácil manutenção quando necessário - com um esquema elétrico que permitisse upgrades dinâmicos, como por exemplo, aumentar a potência do inversor apenas alterando o transformador e os MOSFETS da saída. Também foi previsto uma possível recarga de baterias automotivas, de forma emergencial, visto que a corrente de carga do inversor não é do tipo 'carga rápida' e pode levar algumas horas para que a carga esteja completa ou seja suficiente para a partida do motor.

Sobre o gabinete escolhido: resistente, compacto e que permitisse uma manutenção fácil e descomplicada, praticamente um tool-less, acessível por um fecho de pressão. A ideia inicial seria montar o inversor numa caixa de ferramentas bem forte, mas como eu não pretendia gastar com isso e também por se tratar de um protótipo, resolvi sacrificar meu porta-componentes - que já foi um porta-joias um dia. Se você for montar esse projeto, recomendo um gabinete bastante resistente para que suporte o peso da bateria e do transformador.

Luminária universal


Outra característica seria permitir que fossem instaladas lâmpadas - preferencialmente LED - comerciais diretamente no inversor, para utilização como luminária. A única observação é quanto ao range de operação: precisa ser bivolt, já que o inversor pode operar tanto em 110V quanto em 220V.

Portas USB 5V 1A


Permite a carga de até dois dispositivos de forma simultânea sem a utilização do inversor, ou seja, a carga acontece diretamente da bateria para os dispositivos. A corrente máxima é de 1A e esta corrente é dividida quando dois dispositivos são conectados.

Bateria interna


Uma bateria de 12V x 7A foi adicionada ao circuito e pode ser acessada facilmente apenas levantando a tampa superior do inversor, facilitando a manutenção. Baterias de mesmo formato com correntes maiores podem ser adicionadas, o que aumentará o tempo de carga de forma proporcional, também ampliando a autonomia do inversor.

Conexão de engate rápido para baterias externas


É possível adicionar baterias externas ao inversor, bem como carregar baterias automotivas em casos extremos. A carga é lenta, mas segura e controlada. Outra possibilidade é utilizar o inversor somente com baterias externas, por exemplo, numa situação atípica onde se conecta o borne externo do inversor diretamente à bateria de um veículo.

Bivolt manual


O inversor pode operar em redes 110V e 220V e a tensão de saída no modo bateria será a mesma selecionada na chave traseira. Ou seja, se a rede elétrica for 110V, a saída do inversor em modo bateria será 110V e vice-versa.

Fusíveis de proteção AC e DC


Para aumentar a segurança de operação do inversor, foram adicionados dois fusíveis principais, um para a entrada de energia elétrica e outro para as baterias. Um LED no painel frontal é iluminado caso o fusível das baterias se rompa, indicando a falha.

Conector de força padronizado


Por ser portátil, o cabo de força é removível. Qualquer cabo com mesmo padrão pode ser utilizado, facilitando a reposição caso necessário.

Cooler interno autogerenciado


Em situações extremas - temperatura ambiente acima dos 28º C, carga de múltiplas baterias ou de baterias automotivas - um cooler interno pode ser acionado de forma automática para manutenção da temperatura de trabalho do conjunto. Esse cooler não permanece ativo todo o tempo, sendo acionado somente se for necessário e é alimentado pela fonte auxiliar.

Circuito carregador inteligente


Tensão regulada e controlada com corrente segura, permite o carregamento total com posterior flutuação, mantendo as baterias sempre prontas para uso. Quando chaveado em modo normal - rede elétrica presente - o enrolamento do transformador é dedicado ao circuito carregador, fornecendo uma tensão de 16,4V em aberto que é regulada para 14,4V e gerenciada pelo controlador de carga, alternando a bateria para flutuação de forma automática quando a tensão final alcança os 14,2V - a tensão final de carga pode alcançar 14,4V até 14,6V de acordo com a maioria dos fabricantes de baterias do tipo chumbo-ácida, mas optei por um cut off antecipado para evitar desgastes prematuros. Um voltímetro digital foi adicionado para permitir o monitoramento da carga da bateria.

Chaveamento AC/DC inteligente


Quando o inversor está em modo bateria, nenhum dos relés está atracado, reduzindo ao máximo qualquer carga extra. Também foram aplicados LEDs vermelhos nessa condição, por serem de baixo consumo e o cooler não é utilizado em modo bateria, visto que o circuito inversor não gera aquecimento que justifique a aplicação de ventilação forçada.

Painel frontal e indicadores visuais


O painel do inversor permite controle total sobre as funcionalidades com chave geral, que corta totalmente o contato da bateria. Dessa forma, não existe corrente de stand by. Alguns LEDs foram adicionados para auxiliar a leitura da operação - rede elétrica presente, modo bateria, carga completa, USB ativa e fusível DC aberto - e outras duas chaves permitem ligar/desligar o inversor e as portas USB. 

A possibilidade de desligar o inversor pela chave frontal vem da necessidade de manter o inversor conectado à rede elétrica durante a recarga das baterias. Caso falte energia elétrica durante a recarga, o inversor não entrará em operação, mantendo a carga das baterias inalteradas. Já a chave que permite desligar as portas USB, desconecta totalmente o regulador de 5V da bateria, impossibilitando qualquer consumo de stand by.

Outras aplicações para o projeto


Aproveitando o mesmo circuito inversor com a adição de um circuito cut off de proteção contra descargas profundas das baterias, podemos criar outro projeto bastante interessante: um no-break/UPS para sustentar modem, roteador, switch e equipamentos de telefonia, levando em consideração que esses equipamentos possuem consumo baixo e poderiam ser facilmente atendidos com transformadores menores e entregando grande autonomia final.

Outra aplicação interessante é utilizar o inversor em veículos como motor home, ônibus e triciclos para acionamento de cargas AC diretamente pela tensão da bateria. Algumas pequenas alterações e seria possível operar o inversor a partir de 24VDC e até 48VDC, por exemplo. O circuito original é muito versátil e pode ser aproveitado para diversas outras aplicações, servindo como base para diversos outros projetos.

Considerações finais


O esquema elétrico permite alterações para aumentar a potência do inversor, como mencionei anteriormente, basta alterar o transformador e os MOSFETS, caso necessário. Não incluí um feedback, então, aproximando-se da capacidade máxima do transformador, a tensão tende a cair. Não vi necessidade real para implementar o feedback, mas você pode facilmente adaptar um ao circuito atual. Importante manter conexões e fiação compatíveis com as correntes elevadas para evitar danos e aquecimentos desnecessários ao inversor. Aqui vão algumas recomendações relevantes:

  • Cuidado com as chaves e porta-fusíveis escolhidos, esses componentes precisam suportar altas correntes sem sofrer danos ou gerar aquecimentos
  • O carregador pode ser alterado para fornecer maior corrente, basta adaptar um transistor ao LM317 (no datasheet do LM317 você encontra formas de fazer isso, é excelente para conseguir maiores correntes)
  • O transformador principal é chaveado constantemente, então, escolha um que possa suportar o trabalho duro
  • Relés de qualidade, por favor! 
  • Fiação interna com bitola de acordo com a corrente
  • O voltímetro é opcional, mas altamente recomendável
  • Não existe um circuito de cut off para proteger as baterias contra descarga profunda e isso é intencional: como é um inversor de emergência, é viável sacrificar as baterias para conseguir carregar um celular, por exemplo (se a sua intenção for montar um no-break/UPS, recomendo implementar o circuito de proteção ao projeto)
  • A fonte de alimentação auxiliar pode ser substituída por algum enrolamento do transformador principal, desde que esse possua mais linhas disponíveis, mas vai implicar em algumas adaptações no projeto - por segurança e bom-senso, mantenha essa fonte auxiliar!
  • LEDs utilizados são do tipo comuns, se você for usar outros tipos - como de alto brilho, por exemplo - os resistores limitadores podem ser recalculados
  • O cooler é opcional: não aplicá-lo no projeto vai exigir que você use um dissipador de calor muito eficiente nos componentes críticos - lembrando que o cooler serviria para resfriar o transformador também
  • Ao alterar a potência do inversor e/ou o número de baterias, recalcule os fusíveis de proteção F1 e F2 para manter a segurança da operação

Pretendo fazer uma série de testes com o inversor, para maiores detalhes de comportamento de uso - autonomia máxima, tempos de carga etc. - e os dados serão postados aqui, de forma a complementar as informações de características do projeto.

Antes de qualquer coisa, tenha muito cuidado ao realizar qualquer tipo de reparo, modificação, ajuste ou intervenção em equipamentos elétricos ou eletrônicos. Primeiramente, pela sua segurança. Não me responsabilizo por quaisquer prejuízos que você possa causar ao equipamento, a você e/ou a terceiros. Faça por sua própria conta e risco.


Manutenção de bateria tool-less

Bocal E27 padrão

Detalhe do cooler

Painel traseiro

Painel frontal

Acionamento da chave principal

Acionamento do inversor

Acionamento das portas USB

Calibração do carregador

Tensão de flutuação da bateria (READY)

Cabo auxiliar

Conexão padrão


E temos o esquema elétrico sim, claro! Formato PDF disponível para download aqui. Considere apoiar o site para que mais projetos e ideias possam ser compartilhadas por aqui : )

*** 12/10/2023

Corrigido esquema elétrico que apresentava uma conexão incorreta em RL1



*** 27/10/2023

Corrigido esquema elétrico que apresentava uma conexão incorreta com o cooler




post original que acompanhou o projeto

Faz tempo que brinco com um circuito de inversor e faz mas tempo ainda que tenho vontade de montar um inversor pra chamar de meu - assim como aconteceu lá em 2017 com o projeto do amplificador de potência classe A Pur'A. Então, vamos definir aqui alguns pontos desse inversor:

  • Entrada AC 110V/220V selecionável via chave
  • Bateria interna 12V X 7A 
  • Saída 110VAC ou 220VAC selecionável via chave
  • Portas USB 5V de alta corrente via bateria (não usa o inversor)
  • Carregador inteligente integrado ao projeto
  • Conector para banco de baterias auxiliares externo (máximo 28A, ou 3 baterias externas + 1 interna)
  • Monitor digital de carga da bateria com chave de liga/desliga - para poupar a bateria no modo inversor
  • Forma de onda modificada (ainda não mensurei qual a frequência exata de saída)

A ideia é montar tudo numa caixa de ferramentas para tornar o transporte mais fácil, prático e para proteger o circuito, fornecendo ao projeto maior robustez na montagem. Mais adiante, vou disponibilizar o circuito de base desse projeto, que permite diversas melhorias e outras aplicações também.

*** 18/08/2023

Algumas alterações nas características do projeto

  • Entrada AC 110V/220V selecionável via chave (se entrar 110V, sai 110V e vice-versa)
  • Bateria interna 12V X 7A 
  • Saída 110VAC/220VAC acompanhando o padrão de entrada (se entrar 110V, sai 110V e vice-versa
  • Portas USB 5V de alta corrente via bateria (não usa o inversor)
  • Carregador inteligente integrado ao projeto (usa o mesmo transformador do inversor, que é chaveado quando há tensão AC na entrada e trabalha em modo normal)
  • Conector para banco de baterias auxiliares externo (máximo 28A, ou 3 baterias externas + 1 interna) alterado o projeto por conta da limitação do transformador de saída, que não justifica o banco externo tão largo, sendo possível adicionar apenas uma bateria extra de 12V X 7A (duas baterias no máximo, contando com a interna)
  • Monitor digital de carga da bateria com chave de liga/desliga - para poupar a bateria no modo inversor
  • Forma de onda modificada (ainda não mensurei qual a frequência exata de saída)
  • Chave AC para ligar/desligar as tomadas de saída (quando se quer manter o carregador ligado e as cargas desligadas)
  • Possibilidade de ligar o inversor às baterias automotivas, usando a tomada externa, para uso emergencial (como usar as saídas para iluminação noturna, ligar acessórios, usar o ferro de solda em reparos etc. e permite uma carga de forma controlada, é lenta, mas é possível se a bateria estiver com carga baixa que impeça a partida do motor)
  • Cooler interno assistido - em casos de recarga extrema, ou seja, baterias com baixa capacidade ou automotivas, o dissipador interno aquece bastante devido ao carregador ativo, sendo necessário resfriamento por cooler, que permanece parado em condições normais e somente é acionado nas condições extremas de uso

*** 21/08/2023

Testes de carga da bateria interna e smartphone via porta USB ocorreu com sucesso, embora gere bastante calor. O dissipador de calor precisou ser substituído para melhor troca de calor nessas condições, mesmo com o cooler atuando, a temperatura ficou alta para meus parâmetros de segurança e durabilidade dos projetos. 

Com a substituição do dissipador e sem acionamento do cooler, a temperatura se mantém razoavelmente dentro do esperado, mas ainda bastante quente em condições extremas de carga. Estou reavaliando a utilização do cooler, talvez não seja mais necessário.

*** 03/09/2023

Iniciada a furação do gabinete para instalação das chaves e porta-fusíveis. Também foram definidas as posições de fixação internas dos componentes e algumas alterações nos dissipadores - de novo, aham - para que tudo caiba estrategicamente sem 'conflitos'. E acho que será necessário adicionar o cooler sim, dissipação é alta para manter os dissipadores enclausurados.

*** 08/09/2023

Praticamente 90% do projeto montado no gabinete e testado, tudo funcionando como deveria. Agora faltam os detalhes finais como LEDs indicadores e outros pormenores para finalização. Algumas alterações:

  • Portas USB 5V de alta corrente via bateria (não usa o inversor) com chave on/off e LED azul piscante indicador de funcionamento
  • Somente um LED indicador de status (Verde = rede elétrica, ligado, carregando bateria(s), saídas acionadas; Amarelo = modo bateria, sem rede elétrica presente, indicador de inversor ativo)
  • Chave no painel frontal para desativar o circuito inversor (serve para quando você quer apenas carregar baterias sem correr o risco de faltar energia elétrica e o inversor entrar em funcionamento)
  • Chave AC para ligar/desligar as tomadas de saída (quando se quer manter o carregador ligado e as cargas desligadas)

    Chave AC principal controla as saídas: foi eliminado do projeto a chave para ligar e desligar as saídas porque é possível manter o carregador ativo (PW ON) com o inversor (gatilho) desativado; dessa forma, caso falte energia elétrica, as baterias não serão consumidas 

*** 10/09/2023

Revisão e início da documentação do projeto, esquemas elétricos e características. Algumas alterações e pendências:

  • Somente um LED indicador de status (Verde = rede elétrica, ligado, carregando bateria(s), saídas acionadas; Amarelo = modo bateria, sem rede elétrica presente, indicador de inversor ativo)

    Adicionado um LED a mais para indicar 'contato com a bateria' ao acionar a chave SW1 principal, já que nenhuma indicação ocorre quando o inversor está desabilitado; temos três LEDs principais, agora: contato com a bateria, AC in/carregador ON e inversor ON

  • Instalado o voltímetro digital no painel frontal, acionado na mesma chave que controla as portas USB
  • Analisando melhorias no circuito carregador - cut off preciso, maior capacidade de carga, estágios de carga lenta e carga rápida

*** 14/09/2023

Esquema elétrico pronto e faltando apenas pequenos detalhes para finalização do projeto. Algumas alterações e pendências:

  • Cut off calibrado para corte do carregamento e alternância para flutuação das baterias
  • Mantida corrente de carga atual (não será alterada a capacidade máxima de carga nem criados estágios de carga lenta e rápida)
  • Somente um LED indicador de status (Verde = rede elétrica, ligado, carregando bateria(s), saídas acionadas; Amarelo = modo bateria, sem rede elétrica presente, indicador de inversor ativo) 

    Após implementação de melhorias no projeto, será revisto o painel de LEDs indicadores
*** 17/09/2023

Revisão dos circuitos e alteração do LED de contato da bateria, que foi alterado para o voltímetro, que permanece aceso nessa condição. Calibrando circuito de proteção contra descarga profunda das baterias, será testado e validado a seguir.

*** 24/09/2023

Circuito de proteção contra descarga profunda das baterias validado e implementado no projeto, que passa a cortar o funcionamento do inversor quando a bateria atingir 10,5V. Nessa condição, o driver do inversor é interrompido e um LED é acionado juntamente com um buzzer contínuo. Driver controlador do cooler aprimorado e calibrado.

Algumas melhorias que serão estudadas a partir de agora, já que o projeto inicial se encontra concluído e em fase de testes contínuos para validar sua qualidade:

  • Lanterna embutida (luz ambiente) não será implementado
  • Sinalizador pulsante de emergência não será implementado
  • Bocal padrão E27 para instalação de lâmpada LED 110V/220V até 45W diretamente no inversor

*** 27/09/2023

Circuito carregador aprimorado na tensão de cut off (14,2V) e flutuação (13,4V) com regulação fina e validada. 


*** 02/10/2023
  • Circuito cut off de proteção contra descargas profundas removido do projeto: como se trata de um inversor para uso em emergências, entende-se que a bateria pode ser sacrificada em casos extremos em prol de recarregar um celular, por exemplo
  • Instalado o bocal padrão E27 para instalação de qualquer lâmpada (preferencialmente LED, por questões de consumo) que seja bivolt 110V/220V até 60W, alimentada diretamente pelo inversor, funcionando como uma luminária de emergência
  • Implementado LED indicador de fusível aberto (proteção da bateria)

*** 06/10/2023

Últimas revisões do projeto e do esquema elétrico para publicação. 

Central de alarme de incêndio Engesul Intelbras Slim - como transformar em central de alarme residencial?!

Após alguns meses de estagnação e falta de ideias e de dinheiro também (falando nisso, aqui tem meios bacanas de dar aquela mãozinha pro site) ganhei uma central de alarme de incêndio Engesul Slim. Já tinha visto delas pelo comércio, instaladas e funcionando, e sempre me perguntei como essa bagaça funcionava. Dando aquela estudada no manual dela, pude entender que não se trata de nada além de uma central de alarme residencial com foco nos PPCI obrigatórios. Ou seja, é possível adaptar seu uso para monitoramento residencial de portas, janelas etc.

Logo, aqui se inicia a saga de transformar essa central em uma central de alarme residencial. Para começar, vou deixar o link do manual dela para os nerds de plantão torcendo pro link não sair do ar - já que a Intelbras tirou essa central de linha. Mas se isso acontecer e o projeto der certo, vai ganhar asilo permanente no Drive diyPowered.

11/06/2020, 7h40 - Dia 1

Liguei a central pra ver se dava algum sinal de vida e ela pelo menos está ligando. O display está com alguns pontos queimados mas isso se resolve facilmente, já que tenho alguns LCD compatíveis em mãos. As baterias (2x 12V 2,3A em série) estão esgotadas mas vou tentar ressuscitá-las e ver se ainda aguentam algum tempo.

Uma coisa bacana que já gostei nesse sistema é que ele monitora as tensões tanto da fonte de alimentação (DC) quanto das baterias e mostra a informação no display. Olhando aqui por cima parece ser um daqueles projetos robustos, sem frescuras e que dificilmente dá problema. Parece bastante com o projeto da central de alarme ZSE que tive há alguns anos - com a exceção do rádio que ela tinha para sensores sem fio endereçáveis nos setores. Vou fazendo meus experimentos e criando um log nessa mesma postagem para não criar aqueles tópicos mil sobre o mesmo assunto dentro do site.


14/06/2020, 8h04 - Dia 2

As baterias estão mortas, mas isso já era esperado mesmo. Testei os disparos e descobri como funciona o gatilho dos laços (ou setores) para que a central acione o alarme geral: quando o setor está em aberto (NA) com apenas o resistor de 4,7k em paralelo a central entende que houve uma violação de um sensor e dispara o alarme registrando também na memória (RAM) o evento com data e hora e o endereço. Fechando um curto no setor, a central entende que os sensores estão em espera e a central segue apenas monitorando. Isso nos diz que preciso desenvolver (ou encontrar no mercado) sensores do tipo NF que se torne NA na violação. Fácil.

O display está mesmo meio esquisito, mas talvez seja 'normal' que ele trabalhe meio 'borrado', só vou saber quando trocar ele. No mais, preciso dessas baterias para prosseguir com a saga. Ainda não entendi completamente o funcionamento do sistema, como por exemplo na hora de bloquear ou liberar os laços, ela só habilita dois laços ficando o 3 e o 4 inativos com traços (---) mas isso fica pra depois.

Como já sabemos que o circuito está ok, vou verificar esses laços 3 e 4 fisicamente na placa pra ver se tem algum dano e depois já limpo e monto a central pro aguardo das baterias.

28/06/2020, 14h25 - Dia 3

Falei antes que não sabia o porquê de os laços 3 e 4 estarem com traços (---) na configuração. Descobri que eles ficam assim porque não foram cadastrados os pontos. Fiz um teste e deu certo. As baterias ainda não consegui reposição por falta de dinheiro mesmo, mas como não há pressa... vamos brincando. Mais adiante pretendo montar um sensor experimental para aberturas (portas, janelas, portões etc.) talvez até sem fio. Vamos ver.

Cícero in memoriam (26).

19/08/2020, 10h52 - Dia 4

Esse projeto entrou oficialmente para a regra dos seis meses diyPowered a partir de hoje: reza a lenda interna que se um projeto permanece estagnado por seis meses ele é encerrado. Uma das razões dessa falta de continuidade nesse projeto (além da falta de $$) é que talvez ocorra uma mudança de endereço (talvez de Estado) e os esforços para instalar a central podem ser em vão nesse momento. E também tem o projeto da nova fonte de bancada que emerge com mais urgência porque a antiga está praticamente parada. 
 
09/11/2020 
 
Estamos quase fechando o ciclo dos seis meses e tive uma ideia para utilizar o gabinete dessa central em outro projeto, já que agora moro em apartamento e sinceramente, perdi o tesão nessa central. Aguarde! 

10/11/2020
 
Pois bem. Há muito tempo venho pensando em montar um carregador de baterias inteligente para motos e carros mas não conseguia de jeito nenhum um gabinete bacana e resistente para montar todo aquele hardware bruto. Até dia 09/11/2020. Tenho um trafo bizonho que vai servir perfeitamente para esse projeto e todas as peças necessárias para montar tudo, faltando apenas coisas como o cabeamento e garras jacaré. Vai ficar padrão!

A partir de agora esta postagem será fechada e todas as atualizações do projeto poderão ser lidas aqui.

PCR - Gravação inteligente de imagens de segurança e controle remoto de sistemas eletrônicos via porta paralela

Uma derivação de DVR, que é um equipamento para gravação de câmeras de segurança, o PCR é um computador capaz de gerenciar sua própria energia e alguns equipamentos de segurança pela porta paralela enquanto grava imagens com recursos avançados de detecção de movimento e gerenciamento de espaço em disco

Possuo uma ótima central de alarme em casa da ZSE conectada a uma discadora GSM Westron e faz tempo que penso em instalar câmeras para aumentar nosso nível de segurança. Não que a cidade seja violenta, mas a gente reforça a porta antes que ela seja arrombada. Parti do princípio de que um DVR tradicional não daria conta do recado, porque não seria possível controlar outros equipamentos. E porque são muito caros, a manutenção é cara e as câmeras são absurdamente caras pela qualidade da imagem que elas apresentam. A primeira opção foi mesmo um computador.

Consegui um micro Intel Atom 1.6GHz com 2GB de RAM e placa mãe ECS 945GCD-I230 V.1 num gabinete mini-ITX com fonte de 350W que, a princípio, seria para montar outra jukebox. Alguns testes feitos, cheguei à conclusão de que a máquina rodaria Windows 7 Professional x86 em modo de máximo desempenho e com suporte habilitado para Área de Trabalho Remota - já que seria instalado junto a central de alarme e de outros equipamentos no alto, em local seguro e fora do alcance das mãos. O software escolhido para gerenciar as câmeras é o iSpy Connect, que se mostrou muito eficiente, dinâmico e leve.

Entusiastas diriam que a máquina é 'fraca' para gerenciar vídeo. Discordo, já que a máquina se resume ao sistema operacional e ao software das câmeras, e que nada mais roda em cima disso. Até pensei em aumentar a memória, ao menos, mas as limitações são muitas nos mini-ITX e a ideia é não investir em algo que funciona bem da forma como veio para minha bancada.

As únicas alterações no hardware foram a furação do gabinete para fixação à parede, a instalação do HD e um display LCD com backlight para monitorar a temperatura interna - sim, gera algum calor e eu não pretendo acessar a máquina com frequência para ver o quanto está suja. O PCR é capaz de controlar - pela porta paralela - remotamente a central de alarme e outras coisas, grava imagens de todos os ângulos da casa sem pontos cegos, possui capacidade de gravação estendida graças ao software que gerencia o espaço em disco e monitora movimento - só grava quando detecta movimento nas câmeras - em configuração totalmente gerenciável. O sistema de controle gerenciável pela porta paralela será publicado em breve no blog e conta com até oito canais de acionamento remoto NF e NA.

Por questões óbvias, maiores informações sobre a integração dos sistemas de segurança não serão divulgadas. O micro em questão também seria lixo eletrônico.


PC-R Server ativo e funcional

** 21/09/2014

- Quatro câmeras foram adicionadas ao sistema com previsão de mais duas;
- Gestão de disco aprimorada;
- Gestão de energia aprimorada;
- Roteador/Switch substituído para aprimorar a velocidade;
- Aprimoramento do monitor de temperatura e substituição do backlight (luz laranja, menos brilho, mais discrição) e LED azul (MSGLED) desligado;
- Ventilação aprimorada com menos ruído e maior área coberta;
- Cooler da fonte invertido (melhora a ventilação e reduz ruído de atrito)


Detalhe do monitor de temperatura

Disposição e conexões

** 03/11/2014

- Nova câmera adicionada (5 no total);
- Dissipação de calor aprimorada com cooler externo com controle de temperatura X velocidade;
- Redução do ruído gerado pelo cooler;
- Temperatura interna drasticamente reduzida;


Temperatura controlada (dia quente)

Cooler out/in adicionado

Placa de controle do cooler (sensor no dissipador)

Cooler 80x80mm controlado (giro baixo em
condições normais)

** 08/12/2014

- HD substituído e sistema operacional reinstalado na versão x64;
- iSpy reinstalado na versão x64 e atualizado para a última versão (nesta data);
- Real VNC Enterprise instalado para acesso remoto (LAN) aprimorando a velocidade e a praticidade na manutenção;
- Câmeras reconfiguradas para menor consumo de memória mas mantendo a fidelidade e a resposta de gravação com buffer de 5s e sensor de movimento fino;

Considerações gerais: as versões x64 gerenciam de forma mais eficiente a questão da memória, mas na máquina em questão, o resultado não foi satisfatório dada a limitação de 2GB (DDR2) na placa mãe, que não possui dois slots para expansão. A diferença de desempenho se compararmos a versão anterior do PCR, que usava SO x86 com iSpy obviamente na versão x86, é quase imperceptível. De toda forma, esta atualização não será revertida de imediato, mas futuramente, numa possível manutenção de disco ou coisa que o valha.

Também estudo a possibilidade de implantar o Zone Minder, que roda em Linux. Seria o SO perfeito para a aplicação PCR, mas ainda não me convenci a mudar todo o sistema já implantado e familiarizado, embora as perspectivas sejam favoráveis até agora.

** 03/01/2015

O PCR foi removido das suas instalações para manutenção preventiva e limpeza de todos os coolers e do gabinete. Em uso desde agosto de 2014, esta é a primeira vez que passa por tamanha manutenção. E não estava tão sujo, mas prefiro não deixar acumular pó.

- Downgrade de HD (320GB para 80GB) por questões óbvias;
- Sistema operacional x86 reinstalado e iSpy na versão x86 também por questões de desempenho;
- Buffer das câmeras reduzido para 2s porque os prints (media, espaço abaixo das câmeras onde são exibidas as gravações) perdem o instante do disparo;
- Pen drive de 4GB utilizado como cache do sistema (Microsoft ReadyBoost) melhorou o desempenho e a velocidade do acesso remoto, bem como o consumo de CPU e memória (física e paginação) em níveis impressionantes;
- Cooler externo (vide última atualização) reduzido para 5V (a temperatura necessitava passar dos 50ºC para que a alteração de velocidade fosse autorizada, logo, não quis arriscar em trabalhar nessas condições) e circuito de controle descartado;
- Cooler afixado no dissipador do processador reduziu em 10ºC a temperatura;
- Cooler afixado na parte superior do gabinete para remover o calor aprimorou a manutenção da temperatura interna.

A substituição do HD de notebook por um de desktop aumentou a dissipação de calor interna, o que me obrigou a rever a estrutura anterior. Na atual configuração, a temperatura não ultrapassou os 42ºC num dia de 33ºC. Achei bastante razoável.

** 23/04/2015

Na última manutenção, estudei novamente a questão da ventilação e deixei apenas o cooler externo ligado em 5V, retirando os internos para reduzir o ruído. Também instalei outro monitor de temperatura para o HD, e desliguei os backlights por causa da iluminação excessiva do ambiente. Num futuro próximo, pretendo substituir o gabinete do PCR por outro com melhor ventilação natural, ainda que seja maior, e também há projeto para camuflar todos os objetos de segurança da casa, retirando o PCR e todos os equipamentos do local original para mantê-los em maior segurança. Também tenho algumas ideias no papel para transformar o PCR num servidor de arquivos central, mas isso é coisa para o futuro.

As últimas versões do iSpy passaram a se comportar como as últimas versões do Ubuntu: muito consumo de CPU e RAM para recursos que nem são utilizados. Muito provavelmente, vou remover a instalação atual e passar a utilizar uma versão mais antiga, sem recursos inúteis como suporte extremo ao Youtube.




Reparo monitor LG Flatron W2243SV com placa inverter universal SQB 422 V 1.2

Session.

Tenho esse monitor há alguns anos e ele estava encostado num canto por um grave defeito que deu no inverter, destruindo parte das trilhas e tornando a recuperação um pesadelo. É meu segundo monitor LG de mesmo modelo, e tenho muito apreço por ele e pela qualidade da imagem, mesmo se tratando de uma tela antiga e com geração de vídeo somente VGA.

Como já havia estudado, existem algumas placas universais na China que salvam esses monitores com uma simples adaptação, por um valor muito interessante. Essa placa é a SQB 422 V 1.2 e não existem muitas informações sobre ela por aí. Por isso, fiz uma grande pesquisa e consegui algumas rasas informações sobre ela:

  • Entrada de tensão de alimentação entre 12V e 15V (máximo)
  • Em meus testes de bancada, consumiu cerca de 2,3A com as lâmpadas no brilho máximo
  • É possível usar jumper nas saídas para ligar telas com menos lâmpadas
  • Possui boa montagem, simples, com transformadores independentes
  • A aparência pode variar de acordo com a sua compra, mas a placa é a mesma

Claro que eu havia me esquecido que a tensão de trabalho do driver original é 22V e comprei essa placa sem pensar. Ah, mas você pode regular os 22V da fonte original; claro, eu tentei fazer isso e gerei muito calor, a perda é grande. A solução mais fácil foi instalar uma fonte adicional de 12V internamente para alimentar a placa, deixando os 22V originais somente como referência* para a placa de sinal. Por isso, quando você for comprar uma dessas placas inversoras CCFL universais, atente-se a esse detalhe da alimentação para poder usar a fonte original do monitor.

* a placa de sinal recebe 5V e 22V da fonte original. Se você ligar o monitor somente com os 5V, a placa até aciona normalmente, mas, ao desligar e ligar novamente, costuma acontecer de gerar erro na leitura dos 22V e o LED acender e piscar a cada 3, 4 segundos

Conectando os fios


A placa vem com quatro fios: preto GND, vermelho + 12V ~ 15V e dois amarelos. O fio amarelo ao lado do fio vermelho é conectado ao EN (enable) da placa de sinal e faz o acionamento do driver para acender as lâmpadas, enquanto que o fio amarelo ao lado do fio preto é quem faz o controle de brilho. A única 'queixa' foi que não consegui aproveitar o controle de brilho (dimmer) porque a placa de sinal desse monitor provavelmente possui alguma peculiaridade, dessa forma, não funcionou e eu mantive a configuração como está - sem o controle, as lâmpadas permanecem com brilho total. Assim, ao tentar controlar o brilho digital pelo menu, nada acontece. Demais funcionalidades que não usam o backlight seguiram funcionando, claro - contraste, cor etc.

No mais, não tem mistério nessa adaptação e eu salvei um ótimo monitor para usar como primário - tenho outro de 19" que será usado como secundário. 

Antes de qualquer coisa, tenha muito cuidado ao realizar qualquer tipo de reparo, modificação, ajuste ou intervenção em equipamentos elétricos ou eletrônicos. Primeiramente, pela sua segurança. Não me responsabilizo por quaisquer prejuízos que você possa causar ao equipamento, a você e/ou a terceiros. Faça por sua própria conta e risco.

Resolução máxima do monitor

Visão geral SQB 422 V 1.2

Parte inferior da SQB 422 V 1.2

Driver original com trilhas destruídas

Detalhe da fiação SQB 422 V 1.2

Primeiros testes

Placa de sinal do LG W2243S

Lâmpadas acesas após anos!

Fonte adaptada para o inverter

Fechado o monitor

Sim, troquei o LED original vermelho por este!

Detalhe do LED verde

Compartilhe com alguém!